5 resultados para Cyclic stimulation
Resumo:
p(>= 2)-cyclic and contractive self-mappings on a set of subsets of a metric space which are simultaneously accretive on the whole metric space are investigated. The joint fulfilment of the p-cyclic contractiveness and accretive properties is formulated as well as potential relationships with cyclic self-mappings in order to be Kannan self-mappings. The existence and uniqueness of best proximity points and fixed points is also investigated as well as some related properties of composed self-mappings from the union of any two adjacent subsets, belonging to the initial set of subsets, to themselves.
Resumo:
This paper relies on the study of fixed points and best proximity points of a class of so-called generalized point-dependent (K-Lambda)hybrid p-cyclic self-mappings relative to a Bregman distance Df, associated with a Gâteaux differentiable proper strictly convex function f in a smooth Banach space, where the real functions Lambda and K quantify the point-to-point hybrid and nonexpansive (or contractive) characteristics of the Bregman distance for points associated with the iterations through the cyclic self-mapping.Weak convergence results to weak cluster points are obtained for certain average sequences constructed with the iterates of the cyclic hybrid self-mappings.
Resumo:
Functional Electrical Stimulation (FES) is a technique that consists on applying electrical current pulses to artificially activate motor nerve fibers and produce muscle contractions to achieve functional movements. The main applications of FES are within the rehabilitation field, in which this technique is used to aid recovery or to restore lost motor functions. People that benefit of FES are usually patients with neurological disorders which result in motor dysfunctions; most common patients include stroke and spinal cord injury (SCI). Neuroprosthesis are devices that have their basis in FES technique, and their aim is to bridge interrupted or damaged neural paths between the brain and upper or lower limbs. One of the aims of neuroprosthesis is to artificially generate muscle contractions that produce functional movements, and therefore, assist impaired people by making them able to perform activities of daily living (ADL). FES applies current pulses and stimulates nerve fibers by means of electrodes, which can be either implanted or surface electrodes. Both of them have advantages and disadvantages. Implanted electrodes need open surgery to place them next to the nerve root, so these electrodes carry many disadvantages that are produced by the use of invasive techniques. In return, as the electrodes are attached to the nerve, they make it easier to achieve selective functional movements. On the contrary, surface electrodes are not invasive and are easily attached or detached on the skin. Main disadvantages of surface electrodes are the difficulty of selectively stimulating nerve fibers and uncomfortable feeling perceived by users due to sensory nerves located in the skin. Electrical stimulation surface electrode technology has improved significantly through the years and recently, multi-field electrodes have been suggested. This multi-field or matrix electrode approach brings many advantages to FES; among them it is the possibility of easily applying different stimulation methods and techniques. The main goal of this thesis is therefore, to test two stimulation methods, which are asynchronous and synchronous stimulation, in the upper limb with multi-field electrodes. To this end, a purpose-built wrist torque measuring system and a graphic user interface were developed to measure wrist torque produced with each of the methods and to efficiently carry out the experiments. Then, both methods were tested on 15 healthy subjects and sensitivity results were analyzed for different cases. Results show that there are significant differences between methods regarding sensation in some cases, which can affect effectiveness or success of FES.
Resumo:
3rd International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) Madrid, AUG 28-31, 2014 / editado por Vagenas, EC; Vlachos, DS; Bastos, C; Hofer, T; Kominis, Y; Kosmas, O; LeLay, G; DePadova, P; Rode, B; Suraud, E; Varga, K
Resumo:
This paper investigates some properties of cyclic fuzzy maps in metric spaces. The convergence of distances as well as that of sequences being generated as iterates defined by a class of contractive cyclic fuzzy mapping to fuzzy best proximity points of (non-necessarily intersecting adjacent subsets) of the cyclic disposal is studied. An extension is given for the case when the images of the points of a class of contractive cyclic fuzzy mappings restricted to a particular subset of the cyclic disposal are allowed to lie either in the same subset or in its next adjacent one.