Fixed and Best Proximity Points of Cyclic Jointly Accretive and Contractive Self-Mappings


Autoria(s): De la Sen Parte, Manuel
Data(s)

20/05/2013

20/05/2013

2012

Resumo

p(>= 2)-cyclic and contractive self-mappings on a set of subsets of a metric space which are simultaneously accretive on the whole metric space are investigated. The joint fulfilment of the p-cyclic contractiveness and accretive properties is formulated as well as potential relationships with cyclic self-mappings in order to be Kannan self-mappings. The existence and uniqueness of best proximity points and fixed points is also investigated as well as some related properties of composed self-mappings from the union of any two adjacent subsets, belonging to the initial set of subsets, to themselves.

Identificador

Journal of Applied Mathematics 2012 : (2012) // Article ID 817193

1110-757X

http://hdl.handle.net/10810/10133

10.1155/2012/817193

Idioma(s)

eng

Publicador

Hindawi Publishing Corporation

Relação

http://www.hindawi.com/journals/jam/2012/817193/

Direitos

© 2012 M. De la Sen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

info:eu-repo/semantics/openAccess

Palavras-Chave #nonexpansive mappings #scheme #spaces #convergence #theorems
Tipo

info:eu-repo/semantics/article