16 resultados para Classical literature.
Resumo:
Dossier monográfico: Puesta en escena y escenarios en la diplomacia del mundo romano
Resumo:
This paper estimates a standard version of the New Keynesian monetary (NKM) model under alternative specifications of the monetary policy rule using U.S. and Eurozone data. The estimation procedure implemented is a classical method based on the indirect inference principle. An unrestricted VAR is considered as the auxiliary model. On the one hand, the estimation method proposed overcomes some of the shortcomings of using a structural VAR as the auxiliary model in order to identify the impulse response that defines the minimum distance estimator implemented in the literature. On the other hand, by following a classical approach we can further assess the estimation results found in recent papers that follow a maximum-likelihood Bayesian approach. The estimation results show that some structural parameter estimates are quite sensitive to the specification of monetary policy. Moreover, the estimation results in the U.S. show that the fit of the NKM under an optimal monetary plan is much worse than the fit of the NKM model assuming a forward-looking Taylor rule. In contrast to the U.S. case, in the Eurozone the best fit is obtained assuming a backward-looking Taylor rule, but the improvement is rather small with respect to assuming either a forward-looking Taylor rule or an optimal plan.
Resumo:
Revised: 2007-01.-- Published as an article in: Revista Desarrollo y Sociedad (2006), Semestre II, pp. 245-260.
Resumo:
612 p.
Resumo:
[EN] This paper focuses on how to initiate discussions of the regulatory gaze in primary school classrooms through the study of characters in literature. It specifically focuses on two renowned characters in Spanish literature: Xola (Bernardo Atxaga) and Iholdi (Mariasun Landa). These characters are composed of a chorus of looks which in turn also look. We shall carefully reflect upon these looks and discuss how we see others, how others see us, and how we would like others to see us.
Resumo:
In this thesis we propose a new approach to deduction methods for temporal logic. Our proposal is based on an inductive definition of eventualities that is different from the usual one. On the basis of this non-customary inductive definition for eventualities, we first provide dual systems of tableaux and sequents for Propositional Linear-time Temporal Logic (PLTL). Then, we adapt the deductive approach introduced by means of these dual tableau and sequent systems to the resolution framework and we present a clausal temporal resolution method for PLTL. Finally, we make use of this new clausal temporal resolution method for establishing logical foundations for declarative temporal logic programming languages. The key element in the deduction systems for temporal logic is to deal with eventualities and hidden invariants that may prevent the fulfillment of eventualities. Different ways of addressing this issue can be found in the works on deduction systems for temporal logic. Traditional tableau systems for temporal logic generate an auxiliary graph in a first pass.Then, in a second pass, unsatisfiable nodes are pruned. In particular, the second pass must check whether the eventualities are fulfilled. The one-pass tableau calculus introduced by S. Schwendimann requires an additional handling of information in order to detect cyclic branches that contain unfulfilled eventualities. Regarding traditional sequent calculi for temporal logic, the issue of eventualities and hidden invariants is tackled by making use of a kind of inference rules (mainly, invariant-based rules or infinitary rules) that complicates their automation. A remarkable consequence of using either a two-pass approach based on auxiliary graphs or aone-pass approach that requires an additional handling of information in the tableau framework, and either invariant-based rules or infinitary rules in the sequent framework, is that temporal logic fails to carry out the classical correspondence between tableaux and sequents. In this thesis, we first provide a one-pass tableau method TTM that instead of a graph obtains a cyclic tree to decide whether a set of PLTL-formulas is satisfiable. In TTM tableaux are classical-like. For unsatisfiable sets of formulas, TTM produces tableaux whose leaves contain a formula and its negation. In the case of satisfiable sets of formulas, TTM builds tableaux where each fully expanded open branch characterizes a collection of models for the set of formulas in the root. The tableau method TTM is complete and yields a decision procedure for PLTL. This tableau method is directly associated to a one-sided sequent calculus called TTC. Since TTM is free from all the structural rules that hinder the mechanization of deduction, e.g. weakening and contraction, then the resulting sequent calculus TTC is also free from this kind of structural rules. In particular, TTC is free of any kind of cut, including invariant-based cut. From the deduction system TTC, we obtain a two-sided sequent calculus GTC that preserves all these good freeness properties and is finitary, sound and complete for PLTL. Therefore, we show that the classical correspondence between tableaux and sequent calculi can be extended to temporal logic. The most fruitful approach in the literature on resolution methods for temporal logic, which was started with the seminal paper of M. Fisher, deals with PLTL and requires to generate invariants for performing resolution on eventualities. In this thesis, we present a new approach to resolution for PLTL. The main novelty of our approach is that we do not generate invariants for performing resolution on eventualities. Our method is based on the dual methods of tableaux and sequents for PLTL mentioned above. Our resolution method involves translation into a clausal normal form that is a direct extension of classical CNF. We first show that any PLTL-formula can be transformed into this clausal normal form. Then, we present our temporal resolution method, called TRS-resolution, that extends classical propositional resolution. Finally, we prove that TRS-resolution is sound and complete. In fact, it finishes for any input formula deciding its satisfiability, hence it gives rise to a new decision procedure for PLTL. In the field of temporal logic programming, the declarative proposals that provide a completeness result do not allow eventualities, whereas the proposals that follow the imperative future approach either restrict the use of eventualities or deal with them by calculating an upper bound based on the small model property for PLTL. In the latter, when the length of a derivation reaches the upper bound, the derivation is given up and backtracking is used to try another possible derivation. In this thesis we present a declarative propositional temporal logic programming language, called TeDiLog, that is a combination of the temporal and disjunctive paradigms in Logic Programming. We establish the logical foundations of our proposal by formally defining operational and logical semantics for TeDiLog and by proving their equivalence. Since TeDiLog is, syntactically, a sublanguage of PLTL, the logical semantics of TeDiLog is supported by PLTL logical consequence. The operational semantics of TeDiLog is based on TRS-resolution. TeDiLog allows both eventualities and always-formulas to occur in clause heads and also in clause bodies. To the best of our knowledge, TeDiLog is the first declarative temporal logic programming language that achieves this high degree of expressiveness. Since the tableau method presented in this thesis is able to detect that the fulfillment of an eventuality is prevented by a hidden invariant without checking for it by means of an extra process, since our finitary sequent calculi do not include invariant-based rules and since our resolution method dispenses with invariant generation, we say that our deduction methods are invariant-free.
Resumo:
Santamaría, José Miguel; Pajares, Eterio; Olsen, Vickie; Merino, Raquel; Eguíluz, Federico (eds.)
Resumo:
Eterio Pajares, Raquel Merino y José Miguel Santamaría (eds.)
Resumo:
Eterio Pajares, Raquel Merino y José Miguel Santamaría (eds.)
Resumo:
The Linear Ordering Problem is a popular combinatorial optimisation problem which has been extensively addressed in the literature. However, in spite of its popularity, little is known about the characteristics of this problem. This paper studies a procedure to extract static information from an instance of the problem, and proposes a method to incorporate the obtained knowledge in order to improve the performance of local search-based algorithms. The procedure introduced identifies the positions where the indexes cannot generate local optima for the insert neighbourhood, and thus global optima solutions. This information is then used to propose a restricted insert neighbourhood that discards the insert operations which move indexes to positions where optimal solutions are not generated. In order to measure the efficiency of the proposed restricted insert neighbourhood system, two state-of-the-art algorithms for the LOP that include local search procedures have been modified. Conducted experiments confirm that the restricted versions of the algorithms outperform the classical designs systematically. The statistical test included in the experimentation reports significant differences in all the cases, which validates the efficiency of our proposal.
Resumo:
35 p.
Resumo:
In this paper we introduce a new axiom, denoted claims separability, that is satisfied by several classical division rules defined for claims problems. We characterize axiomatically the entire family of division rules that satisfy this new axiom. In addition, employing claims separability, we characterize the minimal overlap rule, given by O'Neill (1982), Piniles rule and the rules in the TAL-family, introduced by Moreno-Ternero and Villar (2006), which includes the uniform gains rule, the uniform losses rule and the Talmud rule.
Resumo:
421 p.
Resumo:
Spanish Relativity Meeting (ERE 2014) Valencia, SPAIN, SEP 01-05, 2014
Resumo:
[ES] El presente trabajo examina los principales procedimientos de que se sirve san Ambrosio en la homilía de su «Hexameron» dedicada a los animales acuáticos. Se destacan aquellos desarrollos originales con respecto de su principal modelo, Basilio de Cesarea, en especial las ampliaciones de las caracterizaciones de algunos animales, y se proponen ejemplos de su pervivencia en otros tratadistas medievales. El público diverso a quien se dirigía este sermón de cuaresma explica tanto esas digresiones muchas veces pintorescas como otras más conceptuales, en las que el simbolismo cristiano se apropia de las bases de los naturalistas clásicos, desde Aristóteles a Plinio.