8 resultados para Carbon storage
Resumo:
29 p.
Resumo:
The loss of species is known to have significant effects on ecosystem functioning, but only recently has it been recognized that species loss might rival the effects of other forms of environmental change on ecosystem processes. There is a need for experimental studies that explicitly manipulate species richness and environmental factors concurrently to determine their relative impacts on key ecosystem processes such as plant litter decomposition. It is crucial to understand what factors affect the rate of plant litter decomposition and the relative magnitude of such effects because the rate at which plant litter is lost and transformed to other forms of organic and inorganic carbon determines the capacity for carbon storage in ecosystems and the rate at which greenhouse gasses such as carbon dioxide are outgassed. Here we compared how an increase in water temperature of 5 degrees C and loss of detritivorous invertebrate and plant litter species affect decomposition rates in a laboratory experiment simulating stream conditions. Like some prior studies, we found that species identity, rather than species richness per se, is a key driver of decomposition, but additionally we showed that the loss of particular species can equal or exceed temperature change in its impact on decomposition. Our results indicate that the loss of particular species can be as important a driver of decomposition as substantial temperature change, but also that predicting the relative consequences of species loss and other forms of environmental change on decomposition requires knowledge of assemblages and their constituent species' ecology and ecophysiology.
Resumo:
The loss of species is known to have significant effects on ecosystem functioning, but only recently has it been recognized that species loss might rival the effects of other forms of environmental change on ecosystem processes. There is a need for experimental studies that explicitly manipulate species richness and environmental factors concurrently to determine their relative impacts on key ecosystem processes such as plant litter decomposition. It is crucial to understand what factors affect the rate of plant litter decomposition and the relative magnitude of such effects because the rate at which plant litter is lost and transformed to other forms of organic and inorganic carbon determines the capacity for carbon storage in ecosystems and the rate at which greenhouse gasses such as carbon dioxide are outgassed. Here we compared how an increase in water temperature of 5 degrees C and loss of detritivorous invertebrate and plant litter species affect decomposition rates in a laboratory experiment simulating stream conditions. Like some prior studies, we found that species identity, rather than species richness per se, is a key driver of decomposition, but additionally we showed that the loss of particular species can equal or exceed temperature change in its impact on decomposition. Our results indicate that the loss of particular species can be as important a driver of decomposition as substantial temperature change, but also that predicting the relative consequences of species loss and other forms of environmental change on decomposition requires knowledge of assemblages and their constituent species' ecology and ecophysiology
Resumo:
[es]Conocer la distribución de la biodiversidad y de los servicios de los ecosistemas (SE), así como la demanda por parte de la población es la base para realizar una gestión sostenible en la Reserva de la Biosfera de Urdaibai. En este trabajo se analizan los valores ecológicos de la biodiversidad y de cinco SE (regulación del ciclo hidrológico, almacenamiento de carbono, polinización, uso recreativo y disfrute estético del paisaje) en las seis unidades ambientales/ecosistemas presentes en la zona (encinar, marisma, plantaciones forestales, fondos y prados de valles, bosques naturales y hábitat costeros). Se compara esta evaluación con la percepción que la población tiene de dichos servicios y con la demanda que manifiestan los habitantes/usuarios de la reserva. De los resultados obtenidos se concluye que existe una gran demanda de los servicios de abastecimiento y regulación por parte de la población; sin embargo, la población percibe que Urdaibai ofrece principalmente servicios culturales. También se observa que la población no discrimina las diferentes contribuciones que los diferentes ecosistemas realizan a los servicios y que en general las valoraciones de los servicios suministrados asignadas por la población a los diferentes ecosistemas son superiores a las obtenidas con los datos biofísicos, con la excepción de los bosques los cuales son infravalorados. Castellano.
Resumo:
4 p.
Resumo:
28 p.
Resumo:
30 p.
Resumo:
In this paper we analyse the behaviour of the EU market for CO2 emission allowances; specifically, we focus on the contracts maturing in the Kyoto Protocol's second period of application (2008 to 2012). We calibrate the underlying parameters for the allowance price in the long run and we also calibrate those from the Spanish wholesale electricity market. This information is then used to assess the option to install a carbon capture and storage (CCS) unit in a coal-fired power plant. We use a two-dimensional binomial lattice where costs and profits are valued and the optimal investment time is determined. In other words, we study the trigger allowance prices above which it is optimal to install the capture unit immediately. We further analyse the impact of several variables on the critical prices, among them allowance price volatility and a hypothetical government subsidy. We conclude that, at current permit prices, from a financial point of view, immediate installation does not seem justified. This need not be the case, though, if carbon market parameters change dramatically and/or a specific policy to promote these units is adopted.