4 resultados para Bandgap materials
Resumo:
Las proteínas son biopolímeros con potenciales propiedades para aplicaciones en el campo de envases por su capacidad para formar films con buenas propiedades barrera en condiciones secas. Además, al ser biodegradables y provenir de recursos renovables, ofrecen importantes ventajas desde el punto de vista medioambiental y económico. Sin embargo, los films basados en proteínas son frágiles y presentan una baja resistencia a la humedad, por lo que se requiere su modificación para fabricar materiales útiles en las condiciones de servicio.El objetivo de esta tesis es reducir la absorción de humedad y simultáneamente mejorar las propiedades mecánicas de los materiales fabricados con proteína de soja. Para ello es necesaria la adición de sustancias que puedan interaccionar con los grupos polares de la proteína, reduciendo así su carácter hidrofílico y la absorción de humedad, y que a la vez puedan actuar como plastificantes, reduciendo la fragilidad del material fabricado. Además, las condiciones de procesado también influyen en las propiedades del material, por tanto, la optimización del procesado es otro de los objetivos de la tesis.Para poder conseguir la mejora de las propiedades del material y, en concreto, aquellas requeridas por el sector del envase, como son las propiedades mecánicas y la resistencia a la humedad, la tesis se ha centrado en tres áreas: plastificación por adición de glicerol; mezclado con sustancias naturales como gelatinas, ácidos, aceites y azúcares; y procesado por los métodos húmedo y seco.
Resumo:
Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels.
Resumo:
289 p.
Resumo:
Intriguing phenomena and novel physics predicted for two-dimensional (2D) systems formed by electrons in Dirac or Rashba states motivate an active search for new materials or combinations of the already revealed ones. Being very promising ingredients in themselves, interplaying Dirac and Rashba systems can provide a base for next generation of spintronics devices, to a considerable extent, by mixing their striking properties or by improving technically significant characteristics of each other. Here, we demonstrate that in BiTeI@PbSb2Te4 composed of a BiTeI trilayer on top of the topological insulator (TI) PbSb2Te4 weakly- and strongly-coupled Dirac-Rashba hybrid systems are realized. The coupling strength depends on both interface hexagonal stacking and trilayer-stacking order. The weakly-coupled system can serve as a prototype to examine, e.g., plasmonic excitations, frictional drag, spin-polarized transport, and charge-spin separation effect in multilayer helical metals. In the strongly-coupled regime, within similar to 100 meV energy interval of the bulk TI projected bandgap a helical state substituting for the TI surface state appears. This new state is characterized by a larger momentum, similar velocity, and strong localization within BiTeI. We anticipate that our findings pave the way for designing a new type of spintronics devices based on Rashba-Dirac coupled systems.