13 resultados para task recognition
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
Study of emotions in human-computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested.
Resumo:
13 p.
Resumo:
This project introduces an improvement of the vision capacity of the robot Robotino operating under ROS platform. A method for recognizing object class using binary features has been developed. The proposed method performs a binary classification of the descriptors of each training image to characterize the appearance of the object class. It presents the use of the binary descriptor based on the difference of gray intensity of the pixels in the image. It shows that binary features are suitable to represent object class in spite of the low resolution and the weak information concerning details of the object in the image. It also introduces the use of a boosting method (Adaboost) of feature selection al- lowing to eliminate redundancies and noise in order to improve the performance of the classifier. Finally, a kernel classifier SVM (Support Vector Machine) is trained with the available database and applied for predictions on new images. One possible future work is to establish a visual servo-control that is to say the reac- tion of the robot to the detection of the object.
Resumo:
En esta tesis de máster se presenta una metodología para el análisis automatizado de las señales del sonar de largo alcance y una aplicación basada en la técnica de reconocimiento óptico de Optical Character Recognition, caracteres (OCR). La primera contribución consiste en el análisis de imágenes de sonar mediante técnicas de procesamiento de imágenes. En este proceso, para cada imagen de sonar se extraen y se analizan las regiones medibles, obteniendo para cada región un conjunto de características. Con la ayuda de los expertos, cada región es identi cada en una clase (atún o no-atún). De este modo, mediante el aprendizaje supervisado se genera la base de datos y, a su vez, se obtiene un modelo de clasi cación. La segunda contribución es una aplicación OCR que reconoce y extrae de las capturas de pantalla de imágenes de sonar, los caracteres alfanuméricos correspondientes a los parámetros de situación (velocidad, rumbo, localización GPS) y la confi guración de sonar (ganancias, inclinación, ancho del haz). El objetivo de este proceso es el de maximizar la e ficiencia en la detección de atún en el Golfo de Vizcaya y dar el primer paso hacia el desarrollo de un índice de abundancia de esta especie, el cual esté basado en el procesamiento automático de las imágenes de sonar grabadas a bordo de la ota pesquera durante su actividad pesquera rutinaria.
Resumo:
Accurate and fast decoding of speech imagery from electroencephalographic (EEG) data could serve as a basis for a new generation of brain computer interfaces (BCIs), more portable and easier to use. However, decoding of speech imagery from EEG is a hard problem due to many factors. In this paper we focus on the analysis of the classification step of speech imagery decoding for a three-class vowel speech imagery recognition problem. We empirically show that different classification subtasks may require different classifiers for accurately decoding and obtain a classification accuracy that improves the best results previously published. We further investigate the relationship between the classifiers and different sets of features selected by the common spatial patterns method. Our results indicate that further improvement on BCIs based on speech imagery could be achieved by carefully selecting an appropriate combination of classifiers for the subtasks involved.
Resumo:
Query-by-Example Spoken Term Detection (QbE STD) aims at retrieving data from a speech data repository given an acoustic query containing the term of interest as input. Nowadays, it has been receiving much interest due to the high volume of information stored in audio or audiovisual format. QbE STD differs from automatic speech recognition (ASR) and keyword spotting (KWS)/spoken term detection (STD) since ASR is interested in all the terms/words that appear in the speech signal and KWS/STD relies on a textual transcription of the search term to retrieve the speech data. This paper presents the systems submitted to the ALBAYZIN 2012 QbE STD evaluation held as a part of ALBAYZIN 2012 evaluation campaign within the context of the IberSPEECH 2012 Conference(a). The evaluation consists of retrieving the speech files that contain the input queries, indicating their start and end timestamps within the appropriate speech file. Evaluation is conducted on a Spanish spontaneous speech database containing a set of talks from MAVIR workshops(b), which amount at about 7 h of speech in total. We present the database metric systems submitted along with all results and some discussion. Four different research groups took part in the evaluation. Evaluation results show the difficulty of this task and the limited performance indicates there is still a lot of room for improvement. The best result is achieved by a dynamic time warping-based search over Gaussian posteriorgrams/posterior phoneme probabilities. This paper also compares the systems aiming at establishing the best technique dealing with that difficult task and looking for defining promising directions for this relatively novel task.
Resumo:
211 p. :il.
Resumo:
The objective of the work was to develop a non-invasive methodology for image acquisition, processing and nonlinear trajectory analysis of the collective fish response to a stochastic event. Object detection and motion estimation were performed by an optical flow algorithm in order to detect moving fish and simultaneously eliminate background, noise and artifacts. The Entropy and the Fractal Dimension (FD) of the trajectory followed by the centroids of the groups of fish were calculated using Shannon and permutation Entropy and the Katz, Higuchi and Katz-Castiglioni's FD algorithms respectively. The methodology was tested on three case groups of European sea bass (Dicentrarchus labrax), two of which were similar (C1 control and C2 tagged fish) and very different from the third (C3, tagged fish submerged in methylmercury contaminated water). The results indicate that Shannon entropy and Katz-Castiglioni were the most sensitive algorithms and proved to be promising tools for the non-invasive identification and quantification of differences in fish responses. In conclusion, we believe that this methodology has the potential to be embedded in online/real time architecture for contaminant monitoring programs in the aquaculture industry.
Resumo:
150 p.
Resumo:
During the last two decades, analysis of 1/f noise in cognitive science has led to a considerable progress in the way we understand the organization of our mental life. However, there is still a lack of specific models providing explanations of how 1/f noise is generated in coupled brain-body-environment systems, since existing models and experiments typically target either externally observable behaviour or isolated neuronal systems but do not address the interplay between neuronal mechanisms and sensorimotor dynamics. We present a conceptual model of a minimal neurorobotic agent solving a behavioural task that makes it possible to relate mechanistic (neurodynamic) and behavioural levels of description. The model consists of a simulated robot controlled by a network of Kuramoto oscillators with homeostatic plasticity and the ability to develop behavioural preferences mediated by sensorimotor patterns. With only three oscillators, this simple model displays self-organized criticality in the form of robust 1/f noise and a wide multifractal spectrum. We show that the emergence of self-organized criticality and 1/f noise in our model is the result of three simultaneous conditions: a) non-linear interaction dynamics capable of generating stable collective patterns, b) internal plastic mechanisms modulating the sensorimotor flows, and c) strong sensorimotor coupling with the environment that induces transient metastable neurodynamic regimes. We carry out a number of experiments to show that both synaptic plasticity and strong sensorimotor coupling play a necessary role, as constituents of self-organized criticality, in the generation of 1/f noise. The experiments also shown to be useful to test the robustness of 1/f scaling comparing the results of different techniques. We finally discuss the role of conceptual models as mediators between nomothetic and mechanistic models and how they can inform future experimental research where self-organized critically includes sensorimotor coupling among the essential interaction-dominant process giving rise to 1/f noise.
Resumo:
Nucleophosmin (NPM) is a nucleocytoplasmic shuttling protein, normally enriched in nucleoli, that performs several activities related to cell growth. NPM mutations are characteristic of a subtype of acute myeloid leukemia (AML), where mutant NPM seems to play an oncogenic role. AML-associated NPM mutants exhibit altered subcellular traffic, being aberrantly located in the cytoplasm of leukoblasts. Exacerbated export of AML variants of NPM is mediated by the nuclear export receptor CRM1, and due, in part, to a mutationally acquired novel nuclear export signal (NES). To gain insight on the molecular basis of NPM transport in physiological and pathological conditions, we have evaluated the export efficiency of NPM in cells, and present new data indicating that, in normal conditions, wild type NPM is weakly exported by CRM1. On the other hand, we have found that AML-associated NPM mutants efficiently form complexes with CRM1HA (a mutant CRM1 with higher affinity for NESs), and we have quantitatively analyzed CRM1HA interaction with the NES motifs of these mutants, using fluorescence anisotropy and isothermal titration calorimetry. We have observed that the affinity of CRM1HA for these NESs is similar, which may help to explain the transport properties of the mutants. We also describe NPM recognition by the import machinery. Our combined cellular and biophysical studies shed further light on the determinants of NPM traffic, and how it is dramatically altered by AML-related mutations.
Resumo:
Most wearable activity recognition systems assume a predefined sensor deployment that remains unchanged during runtime. However, this assumption does not reflect real-life conditions. During the normal use of such systems, users may place the sensors in a position different from the predefined sensor placement. Also, sensors may move from their original location to a different one, due to a loose attachment. Activity recognition systems trained on activity patterns characteristic of a given sensor deployment may likely fail due to sensor displacements. In this work, we innovatively explore the effects of sensor displacement induced by both the intentional misplacement of sensors and self-placement by the user. The effects of sensor displacement are analyzed for standard activity recognition techniques, as well as for an alternate robust sensor fusion method proposed in a previous work. While classical recognition models show little tolerance to sensor displacement, the proposed method is proven to have notable capabilities to assimilate the changes introduced in the sensor position due to self-placement and provides considerable improvements for large misplacements.
Resumo:
Does language-specific orthography help language detection and lexical access in naturalistic bilingual contexts? This study investigates how L2 orthotactic properties influence bilingual language detection in bilingual societies and the extent to which it modulates lexical access and single word processing. Language specificity of naturalistically learnt L2 words was manipulated by including bigram combinations that could be either L2 language-specific or common in the two languages known by bilinguals. A group of balanced bilinguals and a group of highly proficient but unbalanced bilinguals who grew up in a bilingual society were tested, together with a group of monolinguals (for control purposes). All the participants completed a speeded language detection task and a progressive demasking task. Results showed that the use of the information of orthotactic rules across languages depends on the task demands at hand, and on participants' proficiency in the second language. The influence of language orthotactic rules during language detection, lexical access and word identification are discussed according to the most prominent models of bilingual word recognition.