6 resultados para probability distributions

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN]In this paper we deal with probability distributions over permutation spaces. The Probability model in use is the Mallows model. The distance for permutations that the model uses in the Ulam distance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The learning of probability distributions from data is a ubiquitous problem in the fields of Statistics and Artificial Intelligence. During the last decades several learning algorithms have been proposed to learn probability distributions based on decomposable models due to their advantageous theoretical properties. Some of these algorithms can be used to search for a maximum likelihood decomposable model with a given maximum clique size, k, which controls the complexity of the model. Unfortunately, the problem of learning a maximum likelihood decomposable model given a maximum clique size is NP-hard for k > 2. In this work, we propose a family of algorithms which approximates this problem with a computational complexity of O(k · n^2 log n) in the worst case, where n is the number of implied random variables. The structures of the decomposable models that solve the maximum likelihood problem are called maximal k-order decomposable graphs. Our proposals, called fractal trees, construct a sequence of maximal i-order decomposable graphs, for i = 2, ..., k, in k − 1 steps. At each step, the algorithms follow a divide-and-conquer strategy based on the particular features of this type of structures. Additionally, we propose a prune-and-graft procedure which transforms a maximal k-order decomposable graph into another one, increasing its likelihood. We have implemented two particular fractal tree algorithms called parallel fractal tree and sequential fractal tree. These algorithms can be considered a natural extension of Chow and Liu’s algorithm, from k = 2 to arbitrary values of k. Both algorithms have been compared against other efficient approaches in artificial and real domains, and they have shown a competitive behavior to deal with the maximum likelihood problem. Due to their low computational complexity they are especially recommended to deal with high dimensional domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents a framework where the most important single-valued solutions in the literature of TU games are jointly analyzed. The paper also suggests that similar frameworks may be useful for other coalitional models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Published also as: Documento de Trabajo Banco de España 0504/2005.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]The Mallows and Generalized Mallows models are compact yet powerful and natural ways of representing a probability distribution over the space of permutations. In this paper we deal with the problems of sampling and learning (estimating) such distributions when the metric on permutations is the Cayley distance. We propose new methods for both operations, whose performance is shown through several experiments. We also introduce novel procedures to count and randomly generate permutations at a given Cayley distance both with and without certain structural restrictions. An application in the field of biology is given to motivate the interest of this model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]Probability models on permutations associate a probability value to each of the permutations on n items. This paper considers two popular probability models, the Mallows model and the Generalized Mallows model. We describe methods for making inference, sampling and learning such distributions, some of which are novel in the literature. This paper also describes operations for permutations, with special attention in those related with the Kendall and Cayley distances and the random generation of permutations. These operations are of key importance for the efficient computation of the operations on distributions. These algorithms are implemented in the associated R package. Moreover, the internal code is written in C++.