4 resultados para Stilbene-like ligand photoisomerization

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous transcription factors self-assemble into different order oligomeric species in a way that is actively regulated by the cell. Until now, no general functional role has been identified for this widespread process. Here, we capture the effects of modulated self-assembly in gene expression with a novel quantitative framework. We show that this mechanism provides precision and flexibility, two seemingly antagonistic properties, to the sensing of diverse cellular signals by systems that share common elements present in transcription factors like p53, NF-kappa B, STATs, Oct and RXR. Applied to the nuclear hormone receptor RXR, this framework accurately reproduces a broad range of classical, previously unexplained, sets of gene expression data and corroborates the existence of a precise functional regime with flexible properties that can be controlled both at a genome-wide scale and at the individual promoter level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laccases (benzenediol : oxygen oxi doreductases; EC 1.10.3.2) are wide spread i n nature. They are usually found in higher plants and fungi (Thurston 19 94; Mayer and Staples 2002), but recently some bacterial laccases have also been found . The first laccase studied was from Rhus vernicifera in 1883, a Japanese lacquer tree, fr om which the name laccase was derived (Yoshida , 1883). These enzymes belong to the group of bl ue multi - copper oxidases (MCOs) . They usually contain four copper atoms located in three distinct sites. Each site reacts differently to light. The Type 1 (T1) site copper atom absorbs intensely at 600 nm and emits the blue light , the Type 2 (T2) site copper atom is not visible in the absorption spectr um and last, the Type 3 (T3) site has two c opper atoms and absorbs at 330 nm ( Santhanam et al . , 2011; Quintanar et al . , 2007 ) . The protei n structure acts as a complex ligand for the catalytic coppers, providing them the right structure where changes between the reduction states are thermodynamically possible (Dub é , 2008 ) . These enzymes oxidize a surprisingly wide variety of organic and inorganic compounds like, diphenols, polyphenols, substituted phenols, diamines and a romatic amines, with concomitant reduction of molecular oxygen to water (Thurston , 1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neurotransmitter serotonin (5-HT) has a multifaceted function in the modulation of information processing through the activation of multiple receptor families, including G-protein-coupled receptor subtypes (5-HT1, 5-HT2, 5-HT4-7) and ligand-gated ion channels (5-HT3). The largest population of serotonergic neurons is located in the midbrain, specifically in the raphe nuclei. Although the medial and dorsal raphe nucleus (DRN) share common projecting areas, in the basal ganglia (BG) nuclei serotonergic innervations come mainly from the DRN. The BG are a highly organized network of subcortical nuclei composed of the striatum (caudate and putamen), subthalamic nucleus (STN), internal and external globus pallidus (or entopeduncular nucleus in rodents, GPi/EP and GPe) and substantia nigra (pars compacta, SNc, and pars reticulata, SNr). The BG are part of the cortico-BG-thalamic circuits, which play a role in many functions like motor control, emotion, and cognition and are critically involved in diseases such as Parkinson's disease (PD). This review provides an overview of serotonergic modulation of the BG at the functional level and a discussion of how this interaction may be relevant to treating PD and the motor complications induced by chronic treatment with L-DOPA.