6 resultados para Properties and Applications
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
This paper investigates the boundedness and convergence properties of two general iterative processes which involve sequences of self-mappings on either complete metric or Banach spaces. The sequences of self-mappings considered in the first iterative scheme are constructed by linear combinations of a set of self-mappings, each of them being a weighted version of a certain primary self-mapping on the same space. The sequences of self-mappings of the second iterative scheme are powers of an iteration-dependent scaled version of the primary self-mapping. Some applications are also given to the important problem of global stability of a class of extended nonlinear polytopic-type parameterizations of certain dynamic systems.
Resumo:
Es útil para estudiantes de postgrado (Master y Doctorado) en cursos de Economía o de Microeconomía en los que se analicen problemas de Decisión en condiciones de Riesgo o Incertidumbre. El documento comienza explicando la Teoría de la Utilidad Esperada. A continuación se estudian la aversión al riesgo, los coeficientes de aversión absoluta y relativa al riesgo, la relación “más averso que” entre agentes económicos y los efectos riqueza sobre las decisiones en algunas relaciones de preferencia utilizadas frecuentemente en el análisis económico. La sección 4 se centra en la comparación entre alternativas arriesgadas en términos de rendimiento y riesgo, considerando la dominancia estocástica de primer y segundo orden y algunas extensiones posteriores de esas relaciones de orden. El documento concluye con doce ejercicios resueltos en los que se aplican los conceptos y resultados expuestos en las secciones anteriores a problemas de decisión en varios contextos
Resumo:
En esta tesis estudiamos las teorías sobre la Matriz Densidad Reducida (MDR) como un marco prometedor. Nos enfocamos sobre esta teorías desde dos aspectos: Primero, usamos algunos modelos sencillos hechos con dos partículas las cuales estan armónicamente confinadas como una base para ilustrar la utilidad de la matriz densidad. Para tales sistemas, usamos la MDR de un cuerpo para calcular algunas cantidades de interés tales como densidad de momentum. Posteriormente obtenemos los orbitales naturales y su número de ocupación para algunos de los modelos, y en uno de los casos expresamos la MDR de dos cuerpos de manera exacta en términos de la MDR de un cuerpo. También usamos el teorema diferencial del virial para establecer una descripción unificada de la familia entera de estos sistemas modelo en términos de la densidad. En la seguna parte cambiamos a casos fuera del equilibrio y analizamos la así llamada jerarquía BBGKY de ecuaciones para describir la evolución temporal de un sistema de muchos cuerpos en términos de sus MDRs (a todos los órdenes). Proveemos un exhaustivo estudio de los desafíos y problemas abiertos ligados a la truncación de tales jerarquías de ecuaciones para hacerlas aplicables. Restringimos nuestro análisis a la evolución acoplada de la MDR de uno y dos cuerpos, donde los efectos de correlación de alto orden estan embebidos dentro de la aproximación usada para cerrar las ecuaciones. Probamos que dentro de esta aproximación, el número de electrones y la energía total se conservan, sin importar la aproximación usada. Luego, demostramos que aplicando los esquemas de truncación de estado base para llevar los electrones a comportamientos indeseables y no físicos, tales como la violación e incluso la divergencia en la densidad electrónica local, tanto en regímenes correlacionados débiles y fuertes.
Resumo:
This report is an introduction to the concept of treewidth, a property of graphs that has important implications in algorithms. Some basic concepts of graph theory are presented in the first chapter for those readers that are not familiar with the notation. In Chapter 2, the definition of treewidth and some different ways of characterizing it are explained. The last two chapters focus on the algorithmic implications of treewidth, which are very relevant in Computer Science. An algorithm to compute the treewidth of a graph is presented and its result can be later applied to many other problems in graph theory, like those introduced in the last chapter.
Resumo:
286 p.
Resumo:
Coincidence and common fixed point theorems for a class of Suzuki hybrid contractions involving two pairs of single-valued and multivalued maps in a metric space are obtained. In addition, the existence of a common solution for a certain class of functional equations arising in a dynamic programming is also discussed.