8 resultados para Methacrylate Polymer Systems

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Click" chemistry has become an efficient avenue to unimolecular polymeric nanoparticles through the self-crosslinking of individual polymer chains containing appropriate functional groups. Herein we report the synthesis of ultra-small (7 nm in size) polymethyl methacrylate (PMMA) nanoparticles (NPs) by the "metal-free" cross-linking of PMMA-precursor chains prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization containing beta-ketoester functional groups. Intramolecular collapse was performed by the one-pot reaction of beta-ketoester moieties with alkyl diamines in tetrahydrofurane at r.t. (i.e., by enamine formation). The collapsing process was followed by size exclusion chromatography and by nuclear magnetic resonance spectroscopy. The size of the resulting PMMA-NPs was determined by dynamic light scattering. Enamine "click" chemistry increases the synthetic toolbox for the efficient synthesis of metal-free, ultra-small polymeric NPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Póster presentado en: 11th International Symposium on Applied Bioinorganic Chemistry. 2-5 Diciembre 2011. Barcelona, España (ISABC 2011)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comunicación a congreso: Póster presentado en The 4th EuCheMS Chemistry Congress (4ECC), Prague, Czech Republic, August 26–30, 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-chain technology (SCT) allows the transformation of individual polymer chains to folded/collapsed unimolecular soft nanoparticles. In this work we contribute to the enlargement of the SCT toolbox by demonstrating the efficient synthesis of single-chain polymer nanoparticles (SCNPs) via intrachain amide formation. In particular, we exploit cross-linking between active methylene groups and isocyanate moieties as powerful "click" chemistry driving force for SCNP construction. By employing poly(methyl methacrylate)- (PMMA-) based copolymers bearing beta-ketoester units distributed randomly along the copolymer chains and bifunctional isocyanate cross-linkers, SCNPs were successfully synthesized at r.t. under appropriate reaction conditions. Characterization of the resulting SCNPs was carried out by means of a combination of techniques including size exclusion chromatography (SEC), infrared (IR) spectroscopy, proton nuclear magnetic resonance (H-1 NMR) spectroscopy, dynamic light scattering (DLS), and elemental analysis (EA).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] Herein we investigate the feasibility of detecting photo-induced surface stress changes using the deflection response of cantilevers. For this purpose, silicon microcantilevers have been functionalised with spiropyran photochromic molecules, using both a monolayer and a polymeric brushes approach. Uponultraviolet light irradiation, the spiropyran unit is converted to the merocyanine form due to the photo-induced cleavage of the Cspiro-O bond. The two forms of the molecule have dramatically different charge,polarity and molecular conformations. This makes spiropyrans an ideal system to study the correlation between photo-induced molecular changes and corresponding changes in surface stress. Our investigations include monitoring the changes in static cantilever deflection, and consequently, surface stress of the spiropyran functionalised cantilevers on exposure to ultraviolet light. Cantilever deflection data reveals that ultraviolet induced conformational changes in the spiropyran moiety cause a change incompressive surface stress and this varies with the type of functionalisation method implemented. The change in surface stress response from the spiropyran polymer brushes functionalised cantilevers gives an average surface stress change of 98 Nm−1(n = 24) while the spiropyran monolayer coated cantilevers have an average surface stress change of about 446 Nm−1(n = 8) upon irradiation with UV light.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] Therefore the understanding and proper evaluation of the flow and mixing behaviour at microscale becomes a very important issue. In this study, the diffusion behaviour of two reacting solutions of HCI and NaOH were directly observed in a glass/polydimethylsiloxane microfluidic device using adaptive coatings based on the conductive polymer polyaniline that are covalently attached to the microchannel walls. The two liquid streams were combined at the junction of a Y-shaped microchannel, and allowed to diffuse into each other and react. The results showed excellent correlation between optical observation of the diffusion process and the numerical results. A numerical model which is based on finite volume method (FVM) discretisation of steady Navier-Stokes (fluid flow) equations and mass transport equations without reactions was used to calculate the flow variables at discrete points in the finite volume mesh element. The high correlation between theory and practical data indicates the potential of such coatings to monitor diffusion processes and mixing behaviour inside microfluidic channels in a dye free environment.