7 resultados para Management Misperceptions: An Obstacle to Motivation
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
[EN] The concept of image in its different aspects is very important in today s society as well as in the business management field. Some authors reports that most of the studies that measure image do not take into account neither previous theoretical and conceptual models nor other possible empirical evidence alternatives. Given this need, a research regarding the concept of brand image applied to shopping malls was conducted based on the conceptual model of the consumer cognitive response in order to empirically explore and contrast it. For this reason, a survey was applied to 420 consumers in five shopping malls in Bogotá, achieving a database of 3.749 cases. The results show attribute-shopping mall associations expressed in unique, differentiated, and notorious vocabulary obtained applying lexicometric and multivariate analysis techniques. Attribute-shopping mall associations such as spacious , good location , good variety of stores , and the existence of movie theaters . Finally, this research aims to potentially improve the management of shopping malls and increase their attractiveness and customer loyalty by applying the development of service quality systems, integral communication, segmentation, and positioning.
Resumo:
We study international environmental negotiations when agreements between countries can not be binding. A problem with this kind of negotiations is that countries have incentives for free-riding from such agreements. We develope a notion of equilibrium based on the assumption that countries can create and dissolve agreements in their seeking of a larger welfare. This approach leads to a larger degree of cooperation compared to models based on the internal-external stability approach.
Resumo:
The paper has two major contributions to the theory of repeated games. First, we build a supergame oligopoly model where firms compete in supply functions, we show how collusion sustainability is affected by the presence of a convex cost function, the magnitude of both the slope of demand market, and the number of rivals. Then, we compare the results with those of the traditional Cournot reversion under the same structural characteristics. We find how depending on the number of firms and the slope of the linear demand, collusion sustainability is easier under supply function than under Cournot competition. The conclusions of the models are simulated with data from the Spanish wholesale electricity market to predict lower bounds of the discount factors.
Resumo:
[EN] Based on an extensive theoretical review, the aim of this paper is to carry out a closer examination of the differences between exporters according to their commitment to the international market. Once the main disparities are identified by means of a non-parametric test, a logistic analysis based upon data collected from small and medium sized manufacturing firms is conducted in order to construct a classificatory model.
Resumo:
The seasonal stability tests of Canova & Hansen (1995) (CH) provide a method complementary to that of Hylleberg et al. (1990) for testing for seasonal unit roots. But the distribution of the CH tests are unknown in small samples. We present a method to numerically compute critical values and P-values for the CH tests for any sample size and any seasonal periodicity. In fact this method is applicable to the types of seasonality which are commonly in use, but also to any other.
Resumo:
The development of techniques for oncogenomic analyses such as array comparative genomic hybridization, messenger RNA expression arrays and mutational screens have come to the fore in modern cancer research. Studies utilizing these techniques are able to highlight panels of genes that are altered in cancer. However, these candidate cancer genes must then be scrutinized to reveal whether they contribute to oncogenesis or are coincidental and non-causative. We present a computational method for the prioritization of candidate (i) proto-oncogenes and (ii) tumour suppressor genes from oncogenomic experiments. We constructed computational classifiers using different combinations of sequence and functional data including sequence conservation, protein domains and interactions, and regulatory data. We found that these classifiers are able to distinguish between known cancer genes and other human genes. Furthermore, the classifiers also discriminate candidate cancer genes from a recent mutational screen from other human genes. We provide a web-based facility through which cancer biologists may access our results and we propose computational cancer gene classification as a useful method of prioritizing candidate cancer genes identified in oncogenomic studies.
Resumo:
25 p.