5 resultados para Linear boundary value control problems

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear fusion has arisen as an alternative energy to avoid carbon dioxide emissions, being the tokamak a promising nuclear fusion reactor that uses a magnetic field to confine plasma in the shape of a torus. However, different kinds of magnetohydrodynamic instabilities may affect tokamak plasma equilibrium, causing severe reduction of particle confinement and leading to plasma disruptions. In this sense, numerous efforts and resources have been devoted to seeking solutions for the different plasma control problems so as to avoid energy confinement time decrements in these devices. In particular, since the growth rate of the vertical instability increases with the internal inductance, lowering the internal inductance is a fundamental issue to address for the elongated plasmas employed within the advanced tokamaks currently under development. In this sense, this paper introduces a lumped parameter numerical model of the tokamak in order to design a novel robust sliding mode controller for the internal inductance using the transformer primary coil as actuator.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper deals with the convergence of a remote iterative learning control system subject to data dropouts. The system is composed by a set of discrete-time multiple input-multiple output linear models, each one with its corresponding actuator device and its sensor. Each actuator applies the input signals vector to its corresponding model at the sampling instants and the sensor measures the output signals vector. The iterative learning law is processed in a controller located far away of the models so the control signals vector has to be transmitted from the controller to the actuators through transmission channels. Such a law uses the measurements of each model to generate the input vector to be applied to its subsequent model so the measurements of the models have to be transmitted from the sensors to the controller. All transmissions are subject to failures which are described as a binary sequence taking value 1 or 0. A compensation dropout technique is used to replace the lost data in the transmission processes. The convergence to zero of the errors between the output signals vector and a reference one is achieved as the number of models tends to infinity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2nd International Conference on Education and New Learning Technologies

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Singular Value Decomposition (SVD) is a key linear algebraic operation in many scientific and engineering applications. In particular, many computational intelligence systems rely on machine learning methods involving high dimensionality datasets that have to be fast processed for real-time adaptability. In this paper we describe a practical FPGA (Field Programmable Gate Array) implementation of a SVD processor for accelerating the solution of large LSE problems. The design approach has been comprehensive, from the algorithmic refinement to the numerical analysis to the customization for an efficient hardware realization. The processing scheme rests on an adaptive vector rotation evaluator for error regularization that enhances convergence speed with no penalty on the solution accuracy. The proposed architecture, which follows a data transfer scheme, is scalable and based on the interconnection of simple rotations units, which allows for a trade-off between occupied area and processing acceleration in the final implementation. This permits the SVD processor to be implemented both on low-cost and highend FPGAs, according to the final application requirements.