7 resultados para Fluidic devices.
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
[EN] This paper reports an innovative technique for reagents storage in microfluidic devices by means of a one-step UV-photoprintable ionogel-based microarray on non-modified polymeric substrates. Although the ionogel and the ink-jet printing technology are well published, this is the first study where both are used for long-term reagent storage in lab-on-a-chip devices. This technology for reagent storage is perfectly compatible with mass production fabrication processes since pre-treatment of the device substrate is not necessary and inkjet printing allows for an efficient reagent deposition process. The functionality of this microarray is demonstrated by testing the release of biotin-647 after being stored for 1 month at room temperature. Analysis of the fluorescence of the ionogel-based microarray that contains biotin-647 demonstrated that 90% of the biotin-647 present was released from the ionogel-based microarray after pumping PBS 0.1% Tween at 37 °C. Moreover, the activity of biotin-647 after being released from the ionogel-based microarray was investigated trough the binding capability of this biotin to a microcontact printed chip surface with avidin. These findings pave the way for a novel, one-step, cheap and mass production on-chip reagents storage method applicable to other reagents such as antibodies and proteins and enzymes.
Resumo:
[EN] A new concept for fluid flow manipulation in microfluidic paper-based analytical devices ( µPADs) is presented by introducing ionogel materials as passive pumps. µPADs were fabricated using a new doubleside contact stamping process and ionogels were precisely photopolymerised at the inlet of the µPADs.The ionogels remain mainly on the surface of the paper and get absorbed in the superficial paper-fibers allowing for the liquid to flow from the ionogel into the paper easily. As a proof of concept the fluid flow and mixing behaviour of two different ionogels µPADs were compared with the non-treated µPADs.It was demonstrated that both ionogels highly affect the fluid flow by delaying the flow due to their different physical and chemical properties and water holding capacities.
Resumo:
[EN] A new concept for fluid flow manipulation in microfluidic paper-based analytical devices (m-PADs) is presented by introducing ionogel materials as passive pumps. m-PADs were fabricated using a new doubleside contact stamping process and ionogels were precisely photopolymerised at the inlet of the m-PADs.The ionogels remain mainly on the surface of the paper and get absorbed in the superficial paper-fibers allowing for the liquid to flow from the ionogel into the paper easily. As a proof of concept the fluid flowand mixing behaviour of two different ionogels mPADs were compared with the non-treated mPADs.It was demonstrated that both ionogels highly affect the fluid flow by delaying the flow due to their different physical and chemical properties and water holding capacities.
Resumo:
Within the next few pages, I will try to give a wide description of the project that I have been doing for IK4-Ikerlan. For the last six months, I have been working in developing a socket-based application for Apple devices. These devices work under the iOS operative system, which is programmed in Objective-C, a language similar to C. Although I did not have the chance to develop this application for Apple TV, I was able to create an application for iPhone and another one for iPad. The only difference between both applications was the screen resolution, but we decided to make them separately, as it would be really hard to combine both resolutions, and wallpapers, everything in the same workspace. Finally, it is necessary to add that the main goal was not to create a new application for iOS, but to translate an Android application into iOS. To achieve this, it is required to translate Java code into Objective- C, which is the language used to develop applications for all kinds of Apple devices. Fortunately, there is a tool created by Google, which helped us with this exercise. This tool is called j2ObjC, and it is still being developed.
Resumo:
La fotovoltaica orgánica es una tecnología solar emergente que todavía no ha entrado en el mercado. El objetivo de esta tesis ha sido acercar un poco más la industrialización de dicha tecnología mediante el incremento de la eficiencia y la durabilidad de estos dispositivos solares. Para la consecución de dicho objetivo se identificaron las limitaciones existentes y se diseñó una hora de ruta con diversas estrategias para poder superar cada uno de los problemas. Así, mediante un exhaustivo control de la nano morfología del film fotoactivo y la introducción de electrodos nanoestructurados se ha conseguido incrementar la eficiencia. La sustitución de los electrodos estándares por nuevos electrodos basados en óxidos metálicos confiere durabilidad al sistema. Por último, la sustitución del óxido de indio y estaño como electrodo transparente por nanohilos metálicos de plata habilita la posibilidad de fabricar dispositivos solares flexibles de bajo coste.
Resumo:
170 p.
Resumo:
137 p.