3 resultados para Fish and game licenses
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
Research on moral cleansing and moral self-licensing has introduced dynamic considerations in the theory of moral behavior. Past bad actions trigger negative feelings that make people more likely to engage in future moral behavior to offset them. Symmetrically, past good deeds favor a positive self-perception that creates licensing effects, leading people to engage in behavior that is less likely to be moral. In short, a deviation from a “normal state of being” is balanced with a subsequent action that compensates the prior behavior. We model the decision of an individual trying to reach the optimal level of moral self-worth over time and show that under certain conditions the optimal sequence of actions follows a regular pattern which combines good and bad actions. We conduct an economic experiment where subjects play a sequence of giving decisions (dictator games) to explore this phenomenon. We find that donation in the previous period affects present decisions and the sign is negative: participants’ behavior in every round is negatively correlated to what they did in the past. Hence donations over time seem to be the result of a regular pattern of self-regulation: moral licensing (being selfish after altruist) and cleansing (altruistic after selfish).
Resumo:
The objective of the work was to develop a non-invasive methodology for image acquisition, processing and nonlinear trajectory analysis of the collective fish response to a stochastic event. Object detection and motion estimation were performed by an optical flow algorithm in order to detect moving fish and simultaneously eliminate background, noise and artifacts. The Entropy and the Fractal Dimension (FD) of the trajectory followed by the centroids of the groups of fish were calculated using Shannon and permutation Entropy and the Katz, Higuchi and Katz-Castiglioni's FD algorithms respectively. The methodology was tested on three case groups of European sea bass (Dicentrarchus labrax), two of which were similar (C1 control and C2 tagged fish) and very different from the third (C3, tagged fish submerged in methylmercury contaminated water). The results indicate that Shannon entropy and Katz-Castiglioni were the most sensitive algorithms and proved to be promising tools for the non-invasive identification and quantification of differences in fish responses. In conclusion, we believe that this methodology has the potential to be embedded in online/real time architecture for contaminant monitoring programs in the aquaculture industry.
Resumo:
Chromosome territories constitute the most conspicuous feature of nuclear architecture, and they exhibit non-random distribution patterns in the interphase nucleus. We observed that in cell nuclei from humans with Down Syndrome two chromosomes 21 frequently localize proximal to one another and distant from the third chromosome. To systematically investigate whether the proximally positioned chromosomes were always the same in all cells, we developed an approach consisting of sequential FISH and CISH combined with laser-microdissection of chromosomes from the interphase nucleus and followed by subsequent chromosome identification by microsatellite allele genotyping. This approach identified proximally positioned chromosomes from cultured cells, and the analysis showed that the identity of the chromosomes proximally positioned varies. However, the data suggest that there may be a tendency of the same chromosomes to be positioned close to each other in the interphase nucleus of trisomic cells. The protocol described here represents a powerful new method for genome analysis