4 resultados para Feature analysis
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
Contributed to: "Measuring the Changes": 13th FIG International Symposium on Deformation Measurements and Analysis; 4th IAG Symposium on Geodesy for Geotechnical and Structural Enginering (Lisbon, Portugal, May 12-15, 2008).
Resumo:
The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.
Resumo:
142 p.
Resumo:
The main contribution of this work is to analyze and describe the state of the art performance as regards answer scoring systems from the SemEval- 2013 task, as well as to continue with the development of an answer scoring system (EHU-ALM) developed in the University of the Basque Country. On the overall this master thesis focuses on finding any possible configuration that lets improve the results in the SemEval dataset by using attribute engineering techniques in order to find optimal feature subsets, along with trying different hierarchical configurations in order to analyze its performance against the traditional one versus all approach. Altogether, throughout the work we propose two alternative strategies: on the one hand, to improve the EHU-ALM system without changing the architecture, and, on the other hand, to improve the system adapting it to an hierarchical con- figuration. To build such new models we describe and use distinct attribute engineering, data preprocessing, and machine learning techniques.