7 resultados para Covalent anchorage
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
149 p.: graf.
Resumo:
538 p.
Resumo:
Los mecanismos epigenéticos, entre los que está implicada la modificación covalente de histonas, son esenciales para el mantenimiento estable de la actividad génica en las células. Estos mecanismos también están implicados en la aparición de enfermedades como el cáncer colorrectal (CCR), siendo la metástasis hepática una de las formas más agresivas de la misma al producir una drástica disminución de la esperanza de vida del enfermo. Las modificaciones en las histonas, conocidas recientemente como código histónico, afectan a la estructura de la cromatina y juegan un papel importante en el desarrollo de la tumorogénesis. Sin embargo, se sabe poco acerca de aquellas células que adquieren la capacidad de metastatizar, y es por ello que en el presente trabajo se estudian las diferencias epigenéticas entre células tumorales primarias y células tumorales metastásicas para el patrón de trimetilación de la histona H3 en tres residuos diferentes del aminoácido lisina: lisina 4 (H3K4me3), lisina 9 (H3K9me3) y lisina 27 (H3K27me3).
Resumo:
Enzyme-catalyzed production of biodiesel is the object of extensive research due to the global shortage of fossil fuels and increased environmental concerns. Herein we report the preparation and main characteristics of a novel biocatalyst consisting of Cross-Linked Enzyme Aggregates (CLEAs) of Candida antarctica lipase B (CALB) which are covalently bound to magnetic nanoparticles, and tackle its use for the synthesis of biodiesel from non-edible vegetable and waste frying oils. For this purpose, insolubilized CALB was covalently cross-linked to magnetic nanoparticles of magnetite which the surface was functionalized with –NH2 groups. The resulting biocatalyst combines the relevant catalytic properties of CLEAs (as great stability and feasibility for their reutilization) and the magnetic character, and thus the final product (mCLEAs) are superparamagnetic particles of a robust catalyst which is more stable than the free enzyme, easily recoverable from the reaction medium and reusable for new catalytic cycles. We have studied the main properties of this biocatalyst and we have assessed its utility to catalyze transesterification reactions to obtain biodiesel from non-edible vegetable oils including unrefined soybean, jatropha and cameline, as well as waste frying oil. Using 1% mCLEAs (w/w of oil) conversions near 80% were routinely obtained at 30°C after 24 h of reaction, this value rising to 92% after 72 h. Moreover, the magnetic biocatalyst can be easily recovered from the reaction mixture and reused for at least ten consecutive cycles of 24 h without apparent loss of activity. The obtained results suggest that mCLEAs prepared from CALB can become a powerful biocatalyst for application at industrial scale with better performance than those currently available.
Resumo:
40 p. : il.
Resumo:
MP2/aug-cc-pVTZ calculations were performed on complexes of aluminium and boron trihydrides and trihalides with acetylene and ethylene. These complexes are linked through triel bonds where the triel center (B or Al) is characterized by the Lewis acid properties through its -hole region while -electrons of C2H2 or C2H4 molecule play the role of the Lewis base. Some of these interactions possess characteristics of covalent bonds, i.e., the Al--electrons links as well as the interaction in the BH3-C2H2 complex. The triel--electrons interactions are classified sometimes as the 3c-2e bonds. In the case of boron trihydrides, these interactions are often the preliminary stages of the hydroboration reaction. The Quantum Theory of Atoms in Molecules as well as the Natural Bond Orbitals approach are applied here to characterize the -hole--electrons interactions.
Resumo:
Single-chain technology (SCT) allows the transformation of individual polymer chains to folded/collapsed unimolecular soft nanoparticles. In this work we contribute to the enlargement of the SCT toolbox by demonstrating the efficient synthesis of single-chain polymer nanoparticles (SCNPs) via intrachain amide formation. In particular, we exploit cross-linking between active methylene groups and isocyanate moieties as powerful "click" chemistry driving force for SCNP construction. By employing poly(methyl methacrylate)- (PMMA-) based copolymers bearing beta-ketoester units distributed randomly along the copolymer chains and bifunctional isocyanate cross-linkers, SCNPs were successfully synthesized at r.t. under appropriate reaction conditions. Characterization of the resulting SCNPs was carried out by means of a combination of techniques including size exclusion chromatography (SEC), infrared (IR) spectroscopy, proton nuclear magnetic resonance (H-1 NMR) spectroscopy, dynamic light scattering (DLS), and elemental analysis (EA).