6 resultados para Brain Connectivity Networks

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Elucidating the intricate relationship between brain structure and function, both in healthy and pathological conditions, is a key challenge for modern neuroscience. Recent progress in neuroimaging has helped advance our understanding of this important issue, with diffusion images providing information about structural connectivity (SC) and functional magnetic resonance imaging shedding light on resting state functional connectivity (rsFC). Here, we adopt a systems approach, relying on modular hierarchical clustering, to study together SC and rsFC datasets gathered independently from healthy human subjects. Our novel approach allows us to find a common skeleton shared by structure and function from which a new, optimal, brain partition can be extracted. We describe the emerging common structure-function modules (SFMs) in detail and compare them with commonly employed anatomical or functional parcellations. Our results underline the strong correspondence between brain structure and resting-state dynamics as well as the emerging coherent organization of the human brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How can networking affect the turnout in an election? We present a simple model to explain turnout as a result of a dynamic process of formation of the intention to vote within Erdös-Renyi random networks. Citizens have fixed preferences for one of two parties and are embedded in a given social network. They decide whether or not to vote on the basis of the attitude of their immediate contacts. They may simply follow the behavior of the majority (followers) or make an adaptive local calculus of voting (Downsian behavior). So they either have the intention of voting when the majority of their neighbors are willing to vote too, or they vote when they perceive in their social neighborhood that elections are "close". We study the long run average turnout, interpreted as the actual turnout observed in an election. Depending on the combination of values of the two key parameters, the average connectivity and the probability of behaving as a follower or in a Downsian fashion, the system exhibits monostability (zero turnout), bistability (zero turnout and either moderate or high turnout) or tristability (zero, moderate and high turnout). This means, in particular, that for a wide range of values of both parameters, we obtain realistic turnout rates, i.e. between 50% and 90%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of complex networks has attracted the attention of the scientific community for many obvious reasons. A vast number of systems, from the brain to ecosystems, power grid, and the Internet, can be represented as large complex networks, i.e, assemblies of many interacting components with nontrivial topological properties. The link between these components can describe a global behaviour such as the Internet traffic, electricity supply service, market trend, etc. One of the most relevant topological feature of graphs representing these complex systems is community structure which aims to identify the modules and, possibly, their hierarchical organization, by only using the information encoded in the graph topology. Deciphering network community structure is not only important in order to characterize the graph topologically, but gives some information both on the formation of the network and on its functionality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]This work analyzes the problem of community structure in real-world networks based on the synchronization of nonidentical coupled chaotic Rössler oscillators each one characterized by a defined natural frequency, and coupled according to a predefined network topology. The interaction scheme contemplates an uniformly increasing coupling force to simulate a society in which the association between the agents grows in time. To enhance the stability of the correlated states that could emerge from the synchronization process, we propose a parameterless mechanism that adapts the characteristic frequencies of coupled oscillators according to a dynamic connectivity matrix deduced from correlated data. We show that the characteristic frequency vector that results from the adaptation mechanism reveals the underlying community structure present in the network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Barneko ikerkuntza-txostena