2 resultados para BRAIN NETWORKS
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
The study of complex networks has attracted the attention of the scientific community for many obvious reasons. A vast number of systems, from the brain to ecosystems, power grid, and the Internet, can be represented as large complex networks, i.e, assemblies of many interacting components with nontrivial topological properties. The link between these components can describe a global behaviour such as the Internet traffic, electricity supply service, market trend, etc. One of the most relevant topological feature of graphs representing these complex systems is community structure which aims to identify the modules and, possibly, their hierarchical organization, by only using the information encoded in the graph topology. Deciphering network community structure is not only important in order to characterize the graph topologically, but gives some information both on the formation of the network and on its functionality.
Resumo:
Elucidating the intricate relationship between brain structure and function, both in healthy and pathological conditions, is a key challenge for modern neuroscience. Recent progress in neuroimaging has helped advance our understanding of this important issue, with diffusion images providing information about structural connectivity (SC) and functional magnetic resonance imaging shedding light on resting state functional connectivity (rsFC). Here, we adopt a systems approach, relying on modular hierarchical clustering, to study together SC and rsFC datasets gathered independently from healthy human subjects. Our novel approach allows us to find a common skeleton shared by structure and function from which a new, optimal, brain partition can be extracted. We describe the emerging common structure-function modules (SFMs) in detail and compare them with commonly employed anatomical or functional parcellations. Our results underline the strong correspondence between brain structure and resting-state dynamics as well as the emerging coherent organization of the human brain.