55 resultados para Flujo de nutrientes
Resumo:
La literatura científica relacionada con el timing nutricional es muy popular y por ello un área de investigación continuamente cambiante. Uno de los temas de mayor interés en cuanto al tiempo de los nutrientes es el concepto de ventana anabólica, una estrategia diseñada para maximizar las adaptaciones inducidas por el entrenamiento.
Resumo:
207 p.
Resumo:
[ES]El objetivo de este proyecto es intentar conseguir, mediante la energía que ofrece el mar, un sistema de energía eléctrica autónoma para un pueblo de la Costa Vasca. Para ello, es necesario un estudio que permita obtener el flujo de potencia y la dirección óptima donde situar la central undimotriz, así como el mejor sistema para su aprovechamiento.
Resumo:
170 p.
Resumo:
261 p.
Resumo:
240 p. + anexos
Resumo:
167 p.
Resumo:
[es]Podemos encontrar las ecuaciones de Boussinesq en la descripción de playas, rios y lagos. Estas ecuaciones estudian la dinámica de las aguas poco profundas como las ecuaciones “ Korteweg-deVries (KdV)". Sin embargo, a pesar de ser más conocidas, las ecuaciones de KdV, no son capaces de modelar olas solitarias propagándose en distintas direcciones. Entre muchas otras aplicaciones de las ecuaciones de Boussinesq destaca la de modelar olas de tsunamis. Estos tipos de olas ya son perfectamente descritos por las ecuaciones de Navier Stokes, pero todavía no existen técnicas que permitan resolverlas en un dominio tridimensional. Para ello se usan las ecuaciones de Boussinesq, pensadas como una simplificación de las ecuaciones de Navier Stokes. Los años 1871 y 1872 fueron muy importantes para el desarrollo de las ecuaciones de Boussinesq. Fue en 1871 cuando Valentin Joseph Boussinesq recibió el premio de la “Academy of Sciences”, por su trabajo dedicado a las aguas poco profundas. Ahí fue donde Boussinesq introdujo por primera vez los efectos dispersivos en las ecuaciones de Saint-Venant. Por ello, se puede decir que las ecuaciones de Boussinesq son más completas físicamente que las ecuaciones de Saint-Venant. Las ecuaciones de Boussinesq contienen una estructura hiperbólica (al igual que las ecuaciones no lineales de aguas poco profundas) combinada con derivadas de orden elevado para modelar la dispersión de la ola. Las ecuaciones de Boussinesq pueden aparecer de muchas formas distintas. Dependiendo de como hayamos escogido la variable de la velocidad podemos obtener un modelo u otro. El caso más usual es escoger la variable velocidad en un nivel del agua arbitrario. La efectividad de la ecuación de Boussinesq seleccionada variará dependiendo de la dispersión. Una buena elección de la variable velocidad puede mejorar significativamente la modelización de la propagación de ondas largas. Formalmente, como veremos en el capítulo 1, podemos transformar términos de orden elevado en términos de menor orden usando las relaciones asintóticas. Esto nos proporciona una forma elegante de mejorar las relaciones de dispersi\'on. Las ecuaciones de Boussinesq más conocidas son las que resolveremos en el capítulo 2. En dicho capítulo veremos la ecuación cúbica de Boussinesq, que sirve para describir el movimiento de ondas largas en aguas poco profundas; las ecuaciones de Boussinesq acopladas, que describen el movimiento de dos fluidos distintos en aguas poco profundas (como puede ser el caso de un barco que desprende accidentalmente aceite, el aceite va creando una capa que flota encima de la superficie del agua); la ecuación de Boussinesq estándar, que describe un gran número de fenómenos de olas dispersivas no lineales como la propagaci\ón en ambas direcciones de olas largas en la superficie de aguas poco profundas. Pero en olas de longitud de onda corta presenta una inestabilidad y la ecuación es incorrecta para el problema de Cauchy, por ello Bogolubsky propuso la ecuación de Boussinesq mejorada. Esta ecuación es la última que estudiaremos en el capítulo 2 y es una ecuación físicamente estable, correcta para el problema de Cauchy y además como veremos en el capítulo 3, apropiada para las simulaciones numéricas. Como ya indicado, en el capi tulo 1 deduciremos las ecuaciones de Boussinesq a partir de las ecuaciones físicas del flujo potencial. El objetivo principal es deducir dos modelos de ecuaciones de Boussinesq acopladas y obtener su relación de dispersión. Para llegar a ello, se usa un método de la expansión asintótica de la velocidad potencial en términos de un pequeño parámetro. De esta manera conseguimos dos modelos distintos, cada uno asociado a uno de los dos modelo de disipación que hemos establecido. Por último dado que las ecuaciones siempre vienen dadas en variables dimensionales, volveremos a la notación dimensional para analizar la relación de dispersión de las ecuaciones de Boussinesq disipativas. En el capí tulo 2 pasaremos a su resolución analítica, buscando soluciones de tipo solitón. Introduciremos el método de la tangente hiperbólica, muy útil para encontrar soluciones exactas de ecuaciones no lineales. Usaremos este método para resolver la ecuación cúbica de Boussinesq, un sistema de ecuaciones acopladas de Boussinesq, la ecuación estandar de Boussinesq y la mejorada. Los sistemas que aparecen en la aplicación del método de la tangente hiperbólica estan resueltos usando el software Mathematica y uno de ellos irá incluido en el apéndice A. En el capíulo 3 se introduce un esquema en diferencias finitas, que sirve para convertir problemas de ecuaciones diferenciales en problemas algebraicos fácilmente resolubles numéricamente. Este método nos ayudaráa estudiar la estabilidad y a resolver la ecuación mejorada de Boussinesq numéricamente en dos ejemplos distintos. En el apéndice B incluiremos el programa para la resolución numérica del primer ejemplo con el Mathematica.
Resumo:
En este trabajo se estudia el comportamiento de una lámina de fluido limitada por dos superficies. La temperatura de la superficie inferior es mayor que la de la placa superior. Para pequeños gradientes de temperatura la conducción de calor será suficiente para disipar el calor. Sin embargo, la convección de Bénard, es decir, el movimiento macroscópico de las partículas del fluido, comienza cuando la conducción no es capaz por sí sola de disipar todo el calor debido a un mayor gradiente de temperatura. La consecuencia más notable de la convección es la formación de las llamadas celdas de Bénard. Como se va a demostrar estas solo pueden adoptar determinadas formas geométricas. De hecho, solo pueden ser polígonos regulares y solo serán visibles cuando la diferencia térmica entre las superficies no sea excesivamente grande y el flujo no sea turbulento. Una característica importante de este tipo de sistemas es que las ecuaciones que las rigen no son lineales, y, por tanto, aparece el fenómeno del caos determinista.
Resumo:
El texto está dividido en tres capítulos. Se explicarán conceptos, teoría y modelos que intervendrán de manera directa en los capítulos posteriores. En el primer capítulo se abordarán los problemas lineales de redes. Se describe la teoría relativa a redes y con ello se desarrolla el método simplex para redes, una especialización del método simplex. Además se introducen los problemas de flujo de redes a costo mínimo. En el segundo capítulo se exponen los problemas de transporte y algún caso particular del mismo, para lo cual no será prácticamente necesario el desarrollo de nueva teoría, siendo válido todo lo expuesto en el capítulo previo. En el tercer capítulo se extiende el concepto de problemas de transporte, mediante modelos más completos que pretenden adecuarse algo más a los modelos de la vida real. A pesar de no ser problemas de transporte, están estrechamente relacionados con ellos y por lo tanto podrá ser explotada su estructura interna de problema de transporte. Por último, en los apéndices se encuentran los programas utilizados para resolver los problemas y los ejemplos del texto, se explica como resolver el problema de costo mínimo, de transporte o de transbordo computacionalmente y se realizan pruebas computacionales que demuestran la importancia de las propiedades de los problemas de redes.