40 resultados para HERRERA, NICOLAS
Resumo:
My project is a business plan about the set up of a company and the development of a new and innovative product aimed for the elders. I decide do this project when I discover that one of the more important needs that have the elders is to remember the medicines that they have to take. I thought that a good way could be through a smart watch. My watch have an only function, is a cheap device, easy to use, easy to understand and easy to set up, because the elders usually do not know to use complex electronics devices. There are other similar smart watches and other devices but do not have the necessary characteristics to be a good reminder for elders. My watch is centred to improve the life of the elders, but my product could also be useful for ill people who have to take many medicines during the day. After realizing this business plan, I have proved that my company is viable in the environment and profitable in the market.
Resumo:
En el presente trabajo se realiza una revisión del concepto de Desarrollo Humano Sostenible (DHS) propuesto por Sudhir Anand y Amartya Sen. En el DHS confluyen el Desarrollo Humano (DH) y el Desarrollo Sostenible (DS), y se presenta como un marco apropiado para abordar la dicotomía entre los procesos de desarrollo y el uso sostenible del medio ambiente. Sin embargo, un análisis conceptual de los planteamientos iniciales del DHS sugiere que tal confluencia no es tan automática dadas las diferentes corrientes del DS en disputa (sostenibilidad débil, fuerte o super-fuerte). En este sentido, las implicaciones conceptuales del DHS, fundamentadas desde la sostenibilidad débil, son contrastadas tomando como referencia los planteamientos de la sostenibilidad fuerte provenientes de la Economía Ecológica.
Resumo:
225 p.
Resumo:
219 p.
Resumo:
Nivel educativo: Grado. Duración (en horas): Más de 50 horas
Resumo:
Background: There is growing evidence that microglia are key players in the pathological process of amyotrophic lateral sclerosis (ALS). It is suggested that microglia have a dual role in motoneurone degeneration through the release of both neuroprotective and neurotoxic factors. Results: To identify candidate genes that may be involved in ALS pathology we have analysed at early symptomatic age (P90), the molecular signature of microglia from the lumbar region of the spinal cord of hSOD1(G93A) mice, the most widely used animal model of ALS. We first identified unique hSOD1(G93A) microglia transcriptomic profile that, in addition to more classical processes such as chemotaxis and immune response, pointed toward the potential involvement of the tumour suppressor gene breast cancer susceptibility gene 1 (Brca1). Secondly, comparison with our previous data on hSOD1(G93A) motoneurone gene profile substantiated the putative contribution of Brca1 in ALS. Finally, we established that Brca1 protein is specifically expressed in human spinal microglia and is up-regulated in ALS patients. Conclusions: Overall, our data provide new insights into the pathogenic concept of a non-cell-autonomous disease and the involvement of microglia in ALS. Importantly, the identification of Brca1 as a novel microglial marker and as possible contributor in both human and animal model of ALS may represent a valid therapeutic target. Moreover, our data points toward novel research strategies such as investigating the role of oncogenic proteins in neurodegenerative diseases.
Resumo:
Rio del Rio Hortega (1882-1945) discovered microglia and oligodendrocytes (OLGs), and after Ramon y Cajal, was the most prominent figure of the Spanish school of neurology. He began his scientific career with Nicolas Achucarro from whom he learned the use of metallic impregnation techniques suitable to study non-neuronal cells. Later on, he joined Cajal's laboratory. and Subsequently, he created his own group, where he continued to develop other innovative modifications of silver staining methods that revolutionized the study of glial cells a century ago. He was also interested in neuropathology and became a leading authority on Central Nervous System (CNS) tumors. In parallel to this clinical activity, del Rio Hortega rendered the first systematic description of a major polymorphism present in a subtype of macroglial cells that he named as oligodendroglia and later OLGs. He established their ectodermal origin and suggested that they built the myelin sheath of CNS axons, just as Schwann cells did in the periphery. Notably, he also suggested the trophic role of OLGs for neuronal functionality, an idea that has been substantiated in the last few years. Del Rio Hortega became internationally recognized and established an important neurohistological school with outstanding pupils from Spain and abroad, which nearly disappeared after his exile due to the Spanish civil war. Yet, the difficulty of metal impregnation methods and their variability in results, delayed for some decades the confirmation of his great insights into oligodendrocyte biology until the development of electron microscopy and immunohistochemistry. This review aims at summarizing the pioneer and essential contributions of del Rio Hortega to the current knowledge of oligodendrocyte structure and function, and to provide a hint of the scientific personality of this extraordinary and insufficiently recognized man.
Resumo:
In the present study we have investigated the population genetic structure of albacore (Thunnus alalunga, Bonnaterre 1788) and assessed the loss of genetic diversity, likely due to overfishing, of albacore population in the North Atlantic Ocean. For this purpose, 1,331 individuals from 26 worldwide locations were analyzed by genotyping 75 novel nuclear SNPs. Our results indicated the existence of four genetically homogeneous populations delimited within the Mediterranean Sea, the Atlantic Ocean, the Indian Ocean and the Pacific Ocean. Current definition of stocks allows the sustainable management of albacore since no stock includes more than one genetic entity. In addition, short-and long-term effective population sizes were estimated for the North Atlantic Ocean albacore population, and results showed no historical decline for this population. Therefore, the genetic diversity and, consequently, the adaptive potential of this population have not been significantly affected by overfishing.
Resumo:
[ES] El estudio de la flora alóctona en hábitats urbanos está adquiriendo cada vez un mayor interés por parte de la comunidad científica. Este estudio se llevó a cabo en el municipio de Basauri, situado en la provincia de Bizkaia, donde por un lado, se realizó un catálogo de la flora vascular alóctona y por otro, se realizaron muestreos de vegetación en siete hábitats diferentes, con el objetivo de evaluar el nivel de invasión en cada uno de ellos. Se identificaron un total de 50 especies alóctonas (exóticas) en el municipio, la mayor parte de ellas de origen americano, introducidas como ornamentales y que muestran comportamiento invasor. A partir de los datos de los inventarios de vegetación, se estimó que aproximadamente un 18,2% de las especies eran exóticas, entre las que destacan las que pertenecen a las familias Asteraceae, Fabaceae y Poaceae. Además, se observó que los hábitats más invadidos fueron aquellos sometidos a mayores perturbaciones, como los hábitats ruderales y los riparios, también se observó una disminución de la diversidad total de especies con el aumento de la cobertura de especies alóctonas.
Resumo:
Under the guidance of Ramon y Cajal, a plethora of students flourished and began to apply his silver impregnation methods to study brain cells other than neurons: the neuroglia. In the first decades of the twentieth century, Nicolas Achucarro was one of the first researchers to visualize the brain cells with phagocytic capacity that we know today as microglia. Later, his pupil Pio del Rio-Hortega developed modifications of Achucarro's methods and was able to specifically observe the fine morphological intricacies of microglia. These findings contradicted Cajal's own views on cells that he thought belonged to the same class as oligodendroglia (the so called "third element" of the nervous system), leading to a long-standing discussion. It was only in 1924 that Rio-Hortega's observations prevailed worldwide, thus recognizing microglia as a unique cell type. This late landing in the Neuroscience arena still has repercussions in the twenty first century, as microglia remain one of the least understood cell populations of the healthy brain. For decades, microglia in normal, physiological conditions in the adult brain were considered to be merely "resting," and their contribution as "activated" cells to the neuroinflammatory response in pathological conditions mostly detrimental. It was not until microglia were imaged in real time in the intact brain using two-photon in vivo imaging that the extreme motility of their fine processes was revealed. These findings led to a conceptual revolution in the field: "resting" microglia are constantly surveying the brain parenchyma in normal physiological conditions. Today, following Cajal's school of thought, structural and functional investigations of microglial morphology, dynamics, and relationships with neurons and other glial cells are experiencing a renaissance and we stand at the brink of discovering new roles for these unique immune cells in the healthy brain, an essential step to understand their causal relationship to diseases.