38 resultados para Research Foundation Library Panel


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microglia are largely known as the major orchestrators of the brain inflammatory response. As such, they have been traditionally studied in various contexts of disease, where their activation has been assumed to induce a wide range of detrimental effects. In the last few years, a series of discoveries have challenged the current view of microglia, showing their active and positive contribution to normal brain function. This Research Topic will review the novel physiological roles of microglia in the developing, mature and aging brain, under non-pathological conditions. In particular, this Research Topic will discuss the cellular and molecular mechanisms by which microglia contribute to the formation, pruning and plasticity of synapses; the maintenance of the blood brain barrier; the regulation of adult neurogenesis and hippocampal learning; and neuronal survival, among other important roles. Because these novel findings defy our understanding of microglial function in health as much as in disease, this Research Topic will also summarize the current view of microglial nomenclature, phenotypes, origin and differentiation, sex differences, and contribution to various brain pathologies. Additionally, novel imaging approaches and molecular tools to study microglia in their non-activated state will be discussed. In conclusion, this Research Topic seeks to emphasize how the current research in neuroscience is challenged by never-resting microglia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the recent history of psychology and cognitive neuroscience, the notion of habit has been reduced to a stimulus-triggered response probability correlation. In this paper we use a computational model to present an alternative theoretical view (with some philosophical implications), where habits are seen as self-maintaining patterns of behavior that share properties in common with self-maintaining biological processes, and that inhabit a complex ecological context, including the presence and influence of other habits. Far from mechanical automatisms, this organismic and self-organizing concept of habit can overcome the dominating atomistic and statistical conceptions, and the high temporal resolution effects of situatedness, embodiment and sensorimotor loops emerge as playing a more central, subtle and complex role in the organization of behavior. The model is based on a novel "iterant deformable sensorimotor medium (IDSM)," designed such that trajectories taken through sensorimotor-space increase the likelihood that in the future, similar trajectories will be taken. We couple the IDSM to sensors and motors of a simulated robot, and show that under certain conditions, the IDSM conditions, the IDSM forms self-maintaining patterns of activity that operate across the IDSM, the robot's body, and the environment. We present various environments and the resulting habits that form in them. The model acts as an abstraction of habits at a much needed sensorimotor "meso-scale" between microscopic neuron-based models and macroscopic descriptions of behavior. Finally, we discuss how this model and extensions of it can help us understand aspects of behavioral self-organization, historicity and autonomy that remain out of the scope of contemporary representationalist frameworks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The past years have seen an increasing debate on cooperation and its unique human character. Philosophers and psychologists have proposed that cooperative activities are characterized by shared goals to which participants are committed through the ability to understand each other’s intentions. Despite its popularity, some serious issues arise with this approach to cooperation. First, one may challenge the assumption that high-level mental processes are necessary for engaging in acting cooperatively. If they are, then how do agents that do not possess such ability (preverbal children, or children with autism who are often claimed to be mind-blind) engage in cooperative exchanges, as the evidence suggests? Secondly, to define cooperation as the result of two de-contextualized minds reading each other’s intentions may fail to fully acknowledge the complexity of situated, interactional dynamics and the interplay of variables such as the participants’ relational and personal history and experience. In this paper we challenge such accounts of cooperation, calling for an embodied approach that sees cooperation not only as an individual attitude toward the other, but also as a property of interaction processes. Taking an enactive perspective, we argue that cooperation is an intrinsic part of any interaction, and that there can be cooperative interaction before complex communicative abilities are achieved. The issue then is not whether one is able or not to read the other’s intentions, but what it takes to participate in joint action. From this basic account, it should be possible to build up more complex forms of cooperation as needed. Addressing the study of cooperation in these terms may enhance our understanding of human social development, and foster our knowledge of different ways of engaging with others, as in the case of autism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bipolar disorder (BD) and alcohol use disorders (AUDs) are usually comorbid, and both have been associated with significant neurocognitive impairment. Patients with the BD-AUD comorbidity (dual diagnosis) may have more severe neurocognitive deficits than those with a single diagnosis, but there is paucity of research in this area. To explore this hypothesis more thoroughly, we carried out a systematic literature review through January 2015. Eight studies have examined the effect of AUDs on the neurocognitive functioning of BD patients. Most studies found that BD patients with current or past history of comorbid AUDs show more severe impairments, especially in verbal memory and executive cognition, than their non-dual counterparts. Greater neurocognitive dysfunction is another facet of this severe comorbid presentation. Implications for clinical practice and research are discussed. Specifically, the application of holistic approaches, such as clinical staging and systems biology, may open new avenues of discoveries related to the BD-AUD comorbidity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

These are definitively exciting times for membrane lipid researchers. Once considered just as the cell membrane building blocks, the important role these lipids play is steadily being acknowledged. The improvement occurred in mass spectrometry techniques (MS) allows the establishment of the precise lipid composition of biological extracts. However, to fully understand the biological function of each individual lipid species, we need to know its spatial distribution and dynamics. In the past 10 years, the field has experienced a profound revolution thanks to the development of MS-based techniques allowing lipid imaging (MSI). Images reveal and verify what many lipid researchers had already shown by different means, but none as convincing as an image: each cell type presents a specific lipid composition, which is highly sensitive to its physiological and pathological state. While these techniques will help to place membrane lipids in the position they deserve, they also open the black box containing all the unknown regulatory mechanisms accounting for such tailored lipid composition. Thus, these results urges to different disciplines to redefine their paradigm of study by including the complexity revealed by the MSI techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90 degrees. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMB) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each sholder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figute eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activatoin. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the vertical and the other aligned with the horizontal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning to perceive is faced with a classical paradox: if understanding is required for perception, how can we learn to perceive something new, something we do not yet understand? According to the sensorimotor approach, perception involves mastery of regular sensorimotor co-variations that depend on the agent and the environment, also known as the "laws" of sensorimotor contingencies (SMCs). In this sense, perception involves enacting relevant sensorimotor skills in each situation. It is important for this proposal that such skills can be learned and refined with experience and yet up to this date, the sensorimotor approach has had no explicit theory of perceptual learning. The situation is made more complex if we acknowledge the open-ended nature of human learning. In this paper we propose Piaget's theory of equilibration as a potential candidate to fulfill this role. This theory highlights the importance of intrinsic sensorimotor norms, in terms of the closure of sensorimotor schemes. It also explains how the equilibration of a sensorimotor organization faced with novelty or breakdowns proceeds by re-shaping pre-existing structures in coupling with dynamical regularities of the world. This way learning to perceive is guided by the equilibration of emerging forms of skillful coping with the world. We demonstrate the compatibility between Piaget's theory and the sensorimotor approach by providing a dynamical formalization of equilibration to give an explicit micro-genetic account of sensorimotor learning and, by extension, of how we learn to perceive. This allows us to draw important lessons in the form of general principles for open-ended sensorimotor learning, including the need for an intrinsic normative evaluation by the agent itself. We also explore implications of our micro-genetic account at the personal level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The notion of information processing has dominated the study of the mind for over six decades. However, before the advent of cognitivism, one of the most prominent theoretical ideas was that of Habit. This is a concept with a rich and complex history, which is again starting to awaken interest, following recent embodied, enactive critiques of computationalist frameworks. We offer here a very brief history of the concept of habit in the form of a genealogical network-map. This serves to provide an overview of the richness of this notion and as a guide for further re-appraisal. We identify 77 thinkers and their influences, and group them into seven schools of thought. Two major trends can be distinguished. One is the associationist trend, starting with the work of Locke and Hume, developed by Hartley, Bain, and Mill to be later absorbed into behaviorism through pioneering animal psychologists (Morgan and Thorndike). This tradition conceived of habits atomistically and as automatisms (a conception later debunked by cognitivism). Another historical trend we have called organicism inherits the legacy of Aristotle and develops along German idealism, French spiritualism, pragmatism, and phenomenology. It feeds into the work of continental psychologists in the early 20th century, influencing important figures such as Merleau-Ponty, Piaget, and Gibson. But it has not yet been taken up by mainstream cognitive neuroscience and psychology. Habits, in this tradition, are seen as ecological, self-organizing structures that relate to a web of predispositions and plastic dependencies both in the agent and in the environment. In addition, they are not conceptualized in opposition to rational, volitional processes, but as transversing a continuum from reflective to embodied intentionality. These are properties that make habit a particularly attractive idea for embodied, enactive perspectives, which can now re-evaluate it in light of dynamical systems theory and complexity research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alpha-synuclein (Snca) plays a major role in Parkinson disease (PD). Circulating anti-Snca antibodies has been described in PD patients and healthy controls, but they have been poorly characterized. This study was designed to assess the prevalence of anti-Snca reactivity in human subjects carrying the LRRK2 mutation, idiopathic PD (iPD) patients, and healthy controls and to map the epitopes of the anti-Snca antibodies. Antibodies to Snca were detected by ELISA and immunoblotting using purified recombinant Snca in plasma from individuals carrying LRRK2 mutations (104), iPD patients (59), and healthy controls (83). Epitopes of antibodies were mapped using recombinant protein constructs comprising different regions of Snca. Clear positive anti-Snca reactivity showed no correlation with age, sex, years of evolution, or the disability scores for PD patients and anti-Snca reactivity was not prevalent in human patients with other neurological or autoimmune diseases. Thirteen of the positive individuals were carriers of LRRK2 mutations either non-manifesting (8 out 49 screened) or manifesting (5 positive out 55), three positive (out of 59) were iPD patients, and five positive (out of 83) were healthy controls. Epitope mapping showed that antibodies against the N-terminal (a.a. 1-60) or C-terminal (a.a. 109-140) regions of Snca predominate in LRRK2 mutation carriers and iPD patients, being N122 a critical amino acid for recognition by the anti-C-terminal directed antibodies. Anti-Snca circulating antibodies seem to cluster within families carrying the LRRK2 mutation indicating possible genetic or common environmental factors in the generation of anti-Snca antibodies. These results suggest that case-controls' studies are insufficient and further studies in family cohorts of patients and healthy controls should be undertaken, to progress in the understanding of the possible relationship of anti-Snca antibodies and PD patholog

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many social relationships are a locus of struggle and suffering, either at the individual or interactional level. In this paper we explore why this is the case and suggest a modeling approach for dyadic interactions and the well-being of the participants. To this end we bring together an enactive approach to self with dynamical systems theory. Our basic assumption is that the quality of any social interaction or relationship fundamentally depends on the nature and constitution of the individuals engaged in these interactions. From an enactive perspective the self is conceived as an embodied and socially enacted autonomous system striving to maintain an identity. This striving involves a basic two-fold goal: the ability to exist as an individual in one's own right, while also being open to and affected by others. In terms of dynamical systems theory one can thus consider the individual self as a self-other organized system represented by a phase space spanned by the dimensions of distinction and participation, where attractors can be defined. Based on two everyday examples of dyadic relationship we propose a simple model of relationship dynamics, in which struggle or well-being in the dyad is analyzed in terms of movements of dyadic states that are in tension or in harmony with individually developed attractors. Our model predicts that relationships can be sustained when the dyad develops a new joint attractor toward which dyadic states tend to move, and well-being when this attractor is in balance with the individuals' attractors. We outline how this can inspire research on psychotherapy. The psychotherapy process itself provides a setting that supports clients to become aware how they fare with regards to the two-fold norm of distinction and participation and develop, through active engagement between client (or couple) and therapist, strategies to co-negotiate their self-organization.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Does language-specific orthography help language detection and lexical access in naturalistic bilingual contexts? This study investigates how L2 orthotactic properties influence bilingual language detection in bilingual societies and the extent to which it modulates lexical access and single word processing. Language specificity of naturalistically learnt L2 words was manipulated by including bigram combinations that could be either L2 language-specific or common in the two languages known by bilinguals. A group of balanced bilinguals and a group of highly proficient but unbalanced bilinguals who grew up in a bilingual society were tested, together with a group of monolinguals (for control purposes). All the participants completed a speeded language detection task and a progressive demasking task. Results showed that the use of the information of orthotactic rules across languages depends on the task demands at hand, and on participants' proficiency in the second language. The influence of language orthotactic rules during language detection, lexical access and word identification are discussed according to the most prominent models of bilingual word recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has long been known that neurons in the brain are not physiologically homogeneous. In response to current stimulus, they can fire several distinct patterns of action potentials that are associated with different physiological classes ranging from regular-spiking cells, fast-spiking cells, intrinsically bursting cells, and low-threshold cells. In this work we show that the high degree of variability in firing characteristics of action potentials among these cells is accompanied with a significant variability in the energy demands required to restore the concentration gradients after an action potential. The values of the metabolic energy were calculated for a wide range of cell temperatures and stimulus intensities following two different approaches. The first one is based on the amount of Na+ load crossing the membrane during a single action potential, while the second one focuses on the electrochemical energy functions deduced from the dynamics of the computational neuron models. The results show that the thalamocortical relay neuron is the most energy-efficient cell consuming between 7 and 18 nJ/cm(2) for each spike generated, while both the regular and fast spiking cells from somatosensory cortex and the intrinsically-bursting cell from a cat visual cortex are the least energy-efficient, and can consume up to 100 nJ/cm(2) per spike. The lowest values of these energy demands were achieved at higher temperatures and high external stimuli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neurotransmitter serotonin (5-HT) has a multifaceted function in the modulation of information processing through the activation of multiple receptor families, including G-protein-coupled receptor subtypes (5-HT1, 5-HT2, 5-HT4-7) and ligand-gated ion channels (5-HT3). The largest population of serotonergic neurons is located in the midbrain, specifically in the raphe nuclei. Although the medial and dorsal raphe nucleus (DRN) share common projecting areas, in the basal ganglia (BG) nuclei serotonergic innervations come mainly from the DRN. The BG are a highly organized network of subcortical nuclei composed of the striatum (caudate and putamen), subthalamic nucleus (STN), internal and external globus pallidus (or entopeduncular nucleus in rodents, GPi/EP and GPe) and substantia nigra (pars compacta, SNc, and pars reticulata, SNr). The BG are part of the cortico-BG-thalamic circuits, which play a role in many functions like motor control, emotion, and cognition and are critically involved in diseases such as Parkinson's disease (PD). This review provides an overview of serotonergic modulation of the BG at the functional level and a discussion of how this interaction may be relevant to treating PD and the motor complications induced by chronic treatment with L-DOPA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myotonic dystrophy type 1 (DM1 or Steinert's disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3' untranslated region (UTR) of the Dystrophia ll/Iyotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9 (CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the muscular degeneration seen in DM patients, highlighting the similarities found with muscle aging.