3 resultados para smooth endoplasmic reticulum

em Universita di Parma


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Acetylation and deacetylation at specific lysine (K) residues is mediated by histone acetylases (HATs) and deacetylases (HDACs), respectively. HATs and HDACs act on both histone and non-histone proteins, regulating various processes, including cardiac impulse propagation. Aim of the present work was to establish whether the function of the Ca2+ ATPase SERCA2, one of the major players in Ca2+ reuptake during excitation-contraction coupling in cardiac myocytes (CMs), could be modulated by direct K acetylation. Materials and methods: HL-1 atrial mouse cells (donated by Prof. Claycomb), zebrafish and Streptozotocin-induced diabetic rat CMs were treated with the pan-inhibitor of class I and II HDACs suberanilohydroxamic acid (SAHA) for 1.5 hour. Evaluation of SERCA2 acetylation was analyzed by co-immunoprecipitation. SERCA2 activity was measured on microsomes by pyruvate/NADH coupled reaction assay. SERCA2 mutants were obtained after cloning wild-type and mutated sequences into the pCDNA3 vector and transfected into HEK cells. Ca2+ transients in CMs (loading with Fluo3-AM, field stimulation, 0.5 Hz) and in transfected HEK cells (loading with FLUO-4, caffeine pulse) were recorded. Results: Co-Immunoprecipitation experiments performed on HL-1 cells demonstrated a significant increase in the acetylation of SERCA2 after SAHA-treatment (2.5 µM, n=3). This was associated with an increase in SERCA2 activity in microsomes obtained from HL-1 cells, after SAHA exposure (n=5). Accordingly, SAHA-treatment significantly shortened the Ca2+ reuptake time of adult zebrafish CMs. Further, SAHA 2.5 nM restored to control values the recovery time of Ca2+ transients decay in diabetic rat CMs. HDAC inhibition also improved contraction parameters, such as fraction of shortening, and increased pump activity in microsomes isolated from diabetic CMs (n=4). Notably, the K464, identified by bioinformatic tools as the most probable acetylation site on human SERCA2a, was mutated into Glutamine (Q) or Arginine (R) mimicking acetylation and deacetylation respectively. Measurements of Ca2+ transients in HEK cells revealed that the substitution of K464 with R significantly delayed the transient recovery time, thus indicating that deacetylation has a negative impact on SERCA2 function. Conclusions: Our results indicate that SERCA2 function can be improved by pro-acetylation interventions and that this mechanism of regulation is conserved among species. Therefore, the present work provides the basis to open the search for novel pharmacological tools able to specifically improve SERCA2 activity in diseases where its expression and/or function is impaired, such as diabetic cardiomyopathy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nel sesso maschile il carcinoma della prostata (CaP) è la neoplasia più frequente ed è tra le prime cause di morte per tumore. Ad oggi, sono disponibili diverse strategie terapeutiche per il trattamento del CaP, ma, come comprovato dall’ancora alta mortalità, spesso queste sono inefficaci, a causa soprattutto dello sviluppo di fenomeni di resistenza da parte delle cellule tumorali. La ricerca si sta quindi focalizzando sulla caratterizzazione di tali meccanismi di resistenza e, allo stesso tempo, sull’individuazione di combinazioni terapeutiche che siano più efficaci e capaci di superare queste resistenze. Le cellule tumorali sono fortemente dipendenti dai meccanismi connessi con l’omeostasi proteica (proteostasi), in quanto sono sottoposte a numerosi stress ambientali (ipossia, carenza di nutrienti, esposizione a chemioterapici, ecc.) e ad un’aumentata attività trascrizionale, entrambi fattori che causano un accumulo intracellulare di proteine anomale e/o mal ripiegate, le quali possono risultare dannose per la cellula e vanno quindi riparate o eliminate efficientemente. La cellula ha sviluppato diversi sistemi di controllo di qualità delle proteine, tra cui gli chaperon molecolari, il sistema di degradazione associato al reticolo endoplasmatico (ERAD), il sistema di risposta alle proteine non ripiegate (UPR) e i sistemi di degradazione come il proteasoma e l’autofagia. Uno dei possibili bersagli in cellule tumorali secretorie, come quelle del CaP, è rappresentato dal reticolo endoplasmatico (RE), organello intracellulare deputato alla sintesi, al ripiegamento e alle modificazioni post-traduzionali delle proteine di membrana e secrete. Alterazioni della protestasi a livello del RE inducono l’UPR, che svolge una duplice funzione nella cellula: primariamente funge da meccanismo omeostatico e di sopravvivenza, ma, quando l’omeostasi non è più ripristinabile e lo stimolo di attivazione dell’UPR cronicizza, può attivare vie di segnalazione che conducono alla morte cellulare programmata. La bivalenza, tipica dell’UPR, lo rende un bersaglio particolarmente interessante per promuovere la morte delle cellule tumorali: si può, infatti, sfruttare da una parte l’inibizione di componenti dell’UPR per abrogare i meccanismi adattativi e di sopravvivenza e dall’altra si può favorire il sovraccarico dell’UPR con conseguente induzione della via pro-apoptotica. Le catechine del tè verde sono composti polifenolici estratti dalle foglie di Camellia sinesis che possiedono comprovati effetti antitumorali: inibiscono la proliferazione, inducono la morte di cellule neoplastiche e riducono l’angiogenesi, l’invasione e la metastatizzazione di diversi tipi tumorali, tra cui il CaP. Diversi studi hanno osservato come il RE sia uno dei bersagli molecolari delle catechine del tè verde. In particolare, recenti studi del nostro gruppo di ricerca hanno messo in evidenza come il Polyphenon E (estratto standardizzato di catechine del tè verde) sia in grado, in modelli animali di CaP, di causare un’alterazione strutturale del RE e del Golgi, un deficit del processamento delle proteine secretorie e la conseguente induzione di uno stato di stress del RE, il quale causa a sua volta l’attivazione delle vie di segnalazione dell’UPR. Nel presente studio su due diverse linee cellulari di CaP (LNCaP e DU145) e in un nostro precedente studio su altre due linee cellulari (PNT1a e PC3) è stato confermato che il Polyphenon E è capace di indurre lo stress del RE e di determinare l’attivazione delle vie di segnalazione dell’UPR, le quali possono fungere da meccanismo di sopravvivenza, ma anche contribuire a favorire la morte cellulare indotta dalle catechine del tè verde (come nel caso delle PC3). Considerati questi effetti delle catechine del tè verde in qualità di induttori dell’UPR, abbiamo ipotizzato che la combinazione di questi polifenoli bioattivi e degli inibitori del proteasoma, anch’essi noti attivatori dell’UPR, potesse comportare un aggravamento dell’UPR stesso tale da innescare meccanismi molecolari di morte cellulare programmata. Abbiamo quindi studiato l’effetto di tale combinazione in cellule PC3 trattate con epigallocatechina-3-gallato (EGCG, la principale tra le catechine del tè verde) e due diversi inibitori del proteasoma, il bortezomib (BZM) e l’MG132. I risultati hanno dimostrato, diversamente da quanto ipotizzato, che l’EGCG quando associato agli inibitori del proteasoma non produce effetti sinergici, ma che anzi, quando viene addizionato al BZM, causa una risposta simil-antagonistica: si osserva infatti una riduzione della citotossicità e dell’effetto inibitorio sul proteasoma (accumulo di proteine poliubiquitinate) indotti dal BZM, inoltre anche l’induzione dell’UPR (aumento di GRP78, p-eIF2α, CHOP) risulta ridotta nelle cellule trattate con la combinazione di EGCG e BZM rispetto alle cellule trattate col solo BZM. Gli stessi effetti non si osservano invece nelle cellule PC3 trattate con l’EGCG in associazione con l’MG132, dove non si registra alcuna variazione dei parametri di vitalità cellulare e dei marcatori di inibizione del proteasoma e di UPR (rispetto a quelli osservati nel singolo trattamento con MG132). Essendo l’autofagia un meccanismo compensativo che si attiva in seguito all’inibizione del proteasoma o allo stress del RE, abbiamo valutato che ruolo potesse avere tale meccanismo nella risposta simil-antagonistica osservata in seguito al co-trattamento con EGCG e BZM. I nostri risultati hanno evidenziato, in cellule trattate con BZM, l’attivazione di un flusso autofagico che si intensifica quando viene addizionato l’EGCG. Tramite l’inibizione dell’autofagia mediante co-somministrazione di clorochina, è stato possibile stabilire che l’autofagia indotta dall’EGCG favorisce la sopravvivenza delle cellule sottoposte al trattamento combinato tramite la riduzione dell’UPR. Queste evidenze ci portano a concludere che per il trattamento del CaP è sconsigliabile associare le catechine del tè verde con il BZM e che in futuri studi di combinazione di questi polifenoli con composti antitumorali sarà importante valutare il ruolo dell’autofagia come possibile meccanismo di resistenza.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The eukaryotic translation initiation factor 2 alpha (eIF2α) is part of the initiation complex that drives the initiator amino acid methionine to the ribosome, a crucial step in protein translation. In stress conditions such as virus infection, endoplasmic reticulum (ER) stress, amino acid or heme deficiency eIF2α can be phosphorylated and thereby inhibit global protein synthesis. This adaptive mechanism prevents protein accumulation and consequent cytotoxic effects. Heme-regulated eIF2α kinase (HRI) is a member of the eIF2α kinase family that regulates protein translation in heme deficiency conditions. Although present in all tissues, HRI is predominantly expressed in erythroid cells where it remains inactive in the presence of normal heme concentrations. In response to heme deficiency, HRI is activated and phosphorylates eIF2α decreasing globin synthesis. This mechanism is important to prevent accumulation of heme-free globin chains which cause ER stress and apoptosis. RNA sequencing data from our group showed that in human islets and in primary rat beta cells HRI is the most expressed eIF2α kinase compared to the other family members. Despite its high expression levels, little is known about HRI function in beta cells. The aim of this project is to identify the role of HRI in pancreatic beta cells. This was investigated taking a loss-of-function approach. HRI knock down (KD) by RNA interference induced beta cell apoptosis in basal condition. HRI KD potentiated the apoptotic effects of palmitate or proinflammatory cytokines, two in vitro models for type 2 and type 1 diabetes, respectively. Increased cytokine-induced apoptosis was also observed in HRI-deficient primary rat beta cells. Unexpectedly, we observed a mild increase in eIF2α phosphorylation in HRI-deficient cells. The levels of mRNA or protein expression of C/EBP homologous protein (CHOP) and activating transcription factor 4 (ATF4) were not modified. HRI KD cells have decreased spliced X-box binding protein 1 (XBP1s), an important branch of the ER stress response. However, overexpression of XBP1s by adenovirus in HRI KD cells did not protect from HRI siRNA-induced apoptosis. HRI deficiency decreased phosphorylation of Akt and its downstream targets glycogen synthase kinase 3 (GSK3), forkhead box protein O1 (FOXO1) and Bcl-2-associated death promoter (BAD). Overexpression of a constitutively active form of Akt by adenovirus in HRI-deficient beta cells partially decreased HRI KD-mediated apoptosis. Interestingly, BAD silencing protected from apoptosis caused by HRI deficiency. HRI silencing in beta cells also induced JNK activation. These results suggest an important role of HRI in beta cell survival through modulation of the Akt/BAD pathway. Thus, HRI may be an interesting target to modulate beta cell fate in diabetic conditions.