2 resultados para patella groove

em Universita di Parma


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants can defend themselves from potential pathogenic microorganisms relying on a complex interplay of signaling pathways: activation of the MAPK cascade, transcription of defense related genes, production of reactive oxygen species, nitric oxide and synthesis of other defensive compounds such as phytoalexins. These events are triggered by the recognition of pathogen’s effectors (effector-triggered immunity) or PAMPs (PAMP-triggered immunity). The Cerato Platanin Family (CPF) members are Cys-rich proteins secreted and localized on fungal cell walls, involved in several aspects of fungal development and pathogen-host interactions. Although more than hundred genes of the CPF have been identified and analyzed, the structural and functional characterization of the expressed proteins has been restricted only to few members of the family. Interestingly, those proteins have been shown to bind chitin with diverse affinity and after foliar treatment they elicit defensive mechanisms in host and non-host plants. This property turns cerato platanins into interesting candidates, worth to be studied to develop new fungal elicitors with applications in sustainable agriculture. This study focus on cerato-platanin (CP), core member of the family and on the orthologous cerato-populin (Pop1). The latter shows an identity of 62% and an overall homology of 73% with respect to CP. Both proteins are able to induce MAPKs phosphorylation, production of reactive oxygen species and nitric oxide, overexpression of defense’s related genes, programmed cell death and synthesis of phytoalexins. CP, however, when compared to Pop1, induces a faster response and, in some cases, a stronger activity on plane leaves. Aim of the present research is to verify if the dissimilarities observed in the defense elicitation activity of these proteins can be associated to their structural and dynamic features. Taking advantage of the available CP NMR structure, Pop1’s 3D one was obtained by homology modeling. Experimental residual dipolar couplings and 1H, 15N, 13C resonance assignments were used to validate the model. Previous works on CPF members, addressed the highly conserved random coil regions (loops b1-b2 and b2-b3) as sufficient and necessary to induce necrosis in plants’ leaves: that region was investigated in both Pop1 and CP. In the two proteins the loops differ, in their primary sequence, for few mutations and an insertion with a consequent diversification of the proteins’ electrostatic surface. A set of 2D and 3D NMR experiments was performed to characterize both the spatial arrangement and the dynamic features of the loops. NOE data revealed a more extended network of interactions between the loops in Pop1 than in CP. In addition, in Pop1 we identified a salt bridge Lys25/Asp52 and a strong hydrophobic interaction between Phe26/Trp53. These structural features were expected not only to affect the loops’ spatial arrangement, but also to reduce the degree of their conformational freedom. Relaxation data and the order parameter S2 indeed highlighted reduced flexibility, in particular for loop b1-b2 of Pop1. In vitro NMR experiments, where Pop1 and CP were titrated with oligosaccharides, supported the hypothesis that the loops structural and dynamic differences may be responsible for the different chitin-binding properties of the two proteins: CP selectively binds tetramers of chitin in a shallow groove on one side of the barrel defined by loops b1-b2, b2-b3 and b4-b5, Pop1, instead, interacts in a non-specific fashion with oligosaccharides. Because the region involved in chitin-binding is also responsible for the defense elicitation activity, possibly being recognized by plant's receptors, it is reasonable to expect that those structural and dynamic modifications may also justify the different extent of defense elicitation. To test that hypothesis, the initial steps of a protocol aimed to the identify a receptor for CP, in silico, are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GabR è un fattore di trascrizione chimerico appartenente alla famiglia dei MocR/GabR, costituito da un dominio N-terminale elica-giro-elica di legame al DNA e un dominio effettore e/o di oligomerizzazione al C-terminale. I due domini sono connessi da un linker flessibile di 29 aminoacidi. Il dominio C-terminale è strutturalmente omologo agli enzimi aminotransferasici fold-type I, i quali, utilizzando il piridossal-5’-fosfato (PLP) come cofattore, sono direttamente coinvolti nel metabolismo degli aminoacidi. L’interazione contemporanea di PLP e acido γ-aminobutirrico (GABA) a GabR fa sì che questa promuova la trascrizione di due geni, gabT e gabD, implicati nel metabolismo del GABA. GabR cristallizza come un omodimero con una configurazione testa-coda. Il legame con la regione promotrice gabTD avviene attraverso il riconoscimento specifico di due sequenze dirette e ripetute (ATACCA), separate da uno spacer di 34 bp. In questo studio sono state indagate le proprietà biochimiche, strutturali e di legame al DNA della proteina GabR di Bacillus subtilis. L’analisi spettroscopica dimostra che GabR interagisce con il PLP formando l’aldimina interna, mentre in presenza di GABA si ottiene l’aldimina esterna. L’interazione fra il promotore gabTD e le forme holo e apo di GabR è stata monitorata mediante Microscopia a Forza atomica (AFM). In queste due condizioni di legame è stata stimata una Kd di circa 40 ηM. La presenza di GABA invece, determinava un incremento di circa due volte della Kd, variazioni strutturali nei complessi GabR-DNA e una riduzione del compattamento del DNA alla proteina, indipendentemente dalla sequenza del promotore in esame. Al fine di valutare il ruolo delle caratteristiche topologiche del promotore, sono state inserite cinque e dieci bp all’interno della regione spacer che separa le due sequenze ripetute dirette riconosciute da GabR. I significativi cambiamenti topologici riscontrati nel frammento aggiunto di cinque bp si riflettono anche sulla forte riduzione dell’affinità di legame verso la proteina. Al contrario, l’inserzione di 10 bp provoca solamente l’allontanamento delle sequenze ripetute dirette. L’assenza quindi di cambiamenti significativi nella topologia di questo promotore fa sì che l’affinità di legame per GabR rimanga pressoché inalterata rispetto al promotore non mutato. L’analisi del potenziale elettrostatico superficiale di GabR mostra la presenza di una fascia carica positivamente che si estende lungo un’intera faccia della proteina. Per verificare l’importanza di questa caratteristica di GabR nel meccanismo di interazione al DNA, sono stati preparati ed indagati i mutanti R129Q e K362-366Q, in cui la carica positiva superficiale risultava indebolita. L’affinità di legame dei mutanti di GabR per il DNA era inferiore rispetto alla proteina non mutata, in particolar modo nel mutante K362-366Q. Le evidenze acquisite suggeriscono che la curvatura intrinseca del promotore ed il corretto orientamento delle sequenze sulla doppia elica, più della distanza che le separa, siano critici per sostenere l’interazione con GabR. Oltre a questo, la superficie positiva di GabR è richiesta per accomodare la curvatura del DNA sul corpo della proteina. Alla luce di questo, l’interazione GabR-gabTD è un esempio di come il riconoscimento specifico di sequenze, la topologia del DNA e le caratteristiche strutturali della proteina siano contemporaneamente necessarie per sostenere un’interazione proteina-DNA stabile.