10 resultados para Striped bass
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Studying gamete biology can provide important information about a species fertilization strategy as well as their reproductive ecology. Currently, there is a lack of knowledge about how long sea bass Dicentrarchus labrax eggs can remain viable after being activated in seawater. The objectives of this study were to understand the effects of pre-incubation of fresh and overripe sea bass eggs in seawater and to determine the duration of egg receptivity. Pooled eggs (fresh and overripe) from four females were pre-incubated in seawater for 0 min (control), 0.5 min, 1 min, 3 min, 10 min and 30 min and then fertilized by pooled sperm from four males. The fresh eggs had a higher fertilization success than overripe eggs. Our results revealed a significant effect of pre-incubation time for both the fresh (P < 0.01) and overripe eggs (P < 0.01). Fertilization success of eggs significantly declined for both these treatments after 3 min of pre-incubation, which clearly indicates that sea bass eggs are able to be fertilized by sperm for up to 3 min after release into seawater. This study has particular importance for understanding fertilization strategies, reproductive potential, as well as reproductive ecology of sea bass.
Resumo:
Microplastics are present in marine habitats worldwide and may be ingested by low trophic organisms such as fish larvae, with uncertain physiological consequences. The present study aims at assessing the impact of polyethylene (PE 10-45µM) microbeads ingestion in European sea bass (Dicentrarchus labrax) larvae. Fish were fed an inert diet including 0, 104 and 105 fluorescent microbeads per gram from 7 until 43 days post-hatching (dph). Microbeads were detected in the gastrointestinal tract in all fish fed diet incorporating PE. Our data revealed an efficient elimination of PE beads from the gut since no fluorescent was observed in the larvae after 48h depuration. While the mortality rate increased significantly with the amount of microbeads scored per larvae at 14 and 20 dph, only ingestion of the highest concentration slightly impacted mortality rates. Larval growth and inflammatory response through Interleukine-1-beta (IL-1) gene expression were not found to be affected while cytochrome-P450-1A1 (cyp1a1) expression level was significantly positively correlated with the number of microbeads scored per larva at 20 dph. Overall, these results suggest that ingestion of PE microbeads had limited impact on sea bass larvae possibly due to their high potential of egestion
Resumo:
Climate change challenges the capacity of fishes to thrive in their habitat. However, through phenotypic diversity, they demonstrate remarkable resilience to deteriorating conditions. In fish populations, inter-individual variation in a number of fitness-determining physiological traits, including cardiac performance, is classically observed. Information about the cellular bases of inter-individual variability in cardiac performance is scarce including the possible contribution of excitation-contraction (EC) coupling. This study aimed at providing insight into EC coupling-related Ca2+ response and thermal plasticity in the European sea bass (Dicentrarchus labrax). A cell population approach was used to lay the methodological basis for identifying the cellular determinants of cardiac performance. Fish were acclimated at 12 and 22 A degrees C and changes in intracellular calcium concentration ([Ca2+](i)) following KCl stimulation were measured using Fura-2, at 12 or 22 A degrees C-test. The increase in [Ca2+](i) resulted primarily from extracellular Ca2+ entry but sarcoplasmic reticulum stores were also shown to be involved. As previously reported in sea bass, a modest effect of adrenaline was observed. Moreover, although the response appeared relatively insensitive to an acute temperature change, a difference in Ca2+ response was observed between 12- and 22 A degrees C-acclimated fish. In particular, a greater increase in [Ca2+](i) at a high level of adrenaline was observed in 22 A degrees C-acclimated fish that may be related to an improved efficiency of adrenaline under these conditions. In conclusion, this method allows a rapid screening of cellular characteristics. It represents a promising tool to identify the cellular determinants of inter-individual variability in fishes' capacity for environmental adaptation.
Resumo:
The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (U-CAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower UCAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species.
Resumo:
European sea bass, Dicentrarchus labrax, is a highly valuable species in Europe, both for aquaculture in the Mediterranean Sea and for commercial and recreational fisheries in the North East Atlantic Ocean. Subjected to increasing fishing pressure, the wild population has recently experienced significant recruitment fluctuation as well as a northward extension of its distribution area in the North Sea. While the nature of the ecological and/or physiological processes involved remains unresolved, ontogenetic habitat shifts and adult site fidelity could increase the species’ vulnerability to climate change and overfishing. As managers look for expert information to propose management scenarios leading to sustainable exploitation, exploratory modelling appears to be a cost-efficient approach to enhance the understanding of recruitment dynamics and the spatio-temporal scales over which fish populations function. A conceptual modelling framework and its specific data requirements are discussed to tackle some sound ecological questions regarding this species. We consequently provide an updated review of current knowledge on bass population structure, biology and ecology. This paper will hence be particularly valuable to develop spatially-explicit models of European sea bass dynamics under environmental and anthropogenic forcing. Knowledge gaps requiring further research efforts are also reported.
Resumo:
Determination of rearing data enabled production of sea bass fry for three years in Station DEVA-SUD, CNEXO, France. The larval breeding process is described. The food consists of the ROlÎfer Brachionus plicatilis, then nauplii and 1 mm long metanauplii of the Brachiopod Artemia salina. Weaning on dry pellets oceurs when larvae are 35 days old when an optimum temperature curve is respected. Production of season 1977-78 was 380 000 two month old weaned fry.
Resumo:
An experiment of larval rearing of sea bass is described. Larval density ranged from 50/l at the beginning of the experiment, to 1,4 fingerling/l after 3 months. Fingerlings were fed at that time with a pelletized artificial diet. Average weight was 0,8 g. Survival from the newly hatched larvae was 38%.
Resumo:
In September 2015, the Working Group on Biological Parameters (WGBIOP) recommended an otolith exchange for Mullus surmuletus and Mullus barbatus in 2016 (Otolith Exchanges proposals for 2016/2017; ICES, 2015). Kélig Mahe (IFREMER, France) was decided to be the responsible to organise this otolith exchange. Two otolith exchanges (2008, 2011), and two age reading workshops (ICES, 2009; 2012), have been taken place until now (Mahé et al., 2012). A total of 13 readers from 5 countries (France, Spain, Italy, Cyprus and Greece) participated at the exchange of 2016. The otoliths of 465 individuals (345 M. barbatus & 120 M. surmuletus), sampled from 2011 to 2014 in the Mediterranean Sea (Central Adriatic Sea, Cyprus, Levantine Spain coasts, Balearic Islands) were used for this exchange. For both Mullus species, the precision values were very low, the PA ranged between 56 and 67% the CV ranged from 32 to 64% and the APE ranged from 1.9 to 3.6%. The results by area and species showed the same trend with the first age groups presenting the higher CV values and in some cases lower PA values. These results could be explained by the position of the first growth increment and the two different approaches of reading interpretation used by the readers (ICES, 2012).