150 resultados para Monitoring


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reef fishes are conspicuous and essential components of coral reef ecosystems and economies of southern Florida and the United States Virgin Islands (USVI). Throughout Florida and the USVI, reef fish are under threat from a variety of anthropogenic and natural stressors including overfishing, habitat loss, and environmental changes. The South Florida/Caribbean Network (SFCN), a unit of the National Park Service (NPS), is charged with monitoring reef fishes, among other natural and cultural resources, within six parks in the South Florida - Caribbean region (Biscayne National Park, BISC; Buck Island Reef National Monument, BUIS; Dry Tortugas National Park, DRTO; Everglades National Park, EVER; Salt River Bay National Historic Park and Ecological Preserve, SARI; Virgin Islands National Park, VIIS). Monitoring data is intended for park managers who are and will continue to be asked to make decisions to balance environmental protection, fishery sustainability and park use by visitors. The range and complexity of the issues outlined above, and the need for NPS to invest in a strategy of monitoring, modeling, and management to ensure the sustainability of its precious assets, will require strategic investment in long-term, high-precision, multispecies reef fish data that increases inherent system knowledge and reduces uncertainty. The goal of this guide is to provide the framework for park managers and researchers to create or enhance a reef fish monitoring program within areas monitored by the SFCN. The framework is expected to be applicable to other areas as well, including the Florida Keys National Marine Sanctuary and Virgin Islands Coral Reef National Monument. The favored approach is characterized by an iterative process of data collection, dataset integration, sampling design analysis, and population and community assessment that evaluates resource risks associated with management policies. Using this model, a monitoring program can adapt its survey methods to increase accuracy and precision of survey estimates as new information becomes available, and adapt to the evolving needs and broadening responsibilities of park management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The National Oceanic and Atmospheric Administration (NOAA), in cooperation with the New Jersey Marine Sciences Consortium (NJMSC), hosted a workshop at Rutgers University on 19-21 September 2005 to explore ways to link the U.S. Integrated Ocean Observing System (IOOS) to the emerging infrastructure of the National Water Quality Monitoring Network (NWQMN). Participating partners included the Mid-Atlantic Coastal Ocean Observing Regional Association, U.S. Geological Survey, Rutgers University Coastal Ocean Observing Laboratory, and the New Jersey Sea Grant College. The workshop was designed to highlight the importance of ecological and human health linkages in the movement of materials, nutrients, organisms and contaminants along the Delaware Bay watershed-estuary-coastal waters gradient (hereinafter, the “Delaware Bay Ecosystem [DBE]”), and to address specific water quality issues in the mid-Atlantic region, especially the area comprising the Delaware River drainage and near-shore waters. Attendees included federal, state and municipal officials, coastal managers, members of academic and research institutions, and industry representatives. The primary goal of the effort was to identify key management issues and related scientific questions that could be addressed by a comprehensive IOOS-NWQMN infrastructure (US Commission on Ocean Policy 2004; U.S. Ocean Action Plan 2004). At a minimum, cooperative efforts among the three federal agencies (NOAA, USGS and EPA) involved in water quality monitoring were required. Further and recommended by the U.S. Commission on Ocean Policy, outreach to states, regional organizations, and tribes was necessary to develop an efficient system of data gathering, quality assurance and quality control protocols, product development, and information dissemination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intersection of social and environmental forces is complex in coastal communities. The well-being of a coastal community is caught up in the health of its environment, the stability of its economy, the provision of services to its residents, and a multitude of other factors. With this in mind, the project investigators sought to develop an approach that would enable researchers to measure these social and environmental interactions. The concept of well-being proved extremely useful for this purpose. Using the Gulf of Mexico as a regional case study, the research team developed a set of composite indicators to be used for monitoring well-being at the county-level. The indicators selected for the study were: Social Connectedness, Economic Security, Basic Needs, Health, Access to Social Services, Education, Safety, Governance, and Environmental Condition. For each of the 37 sample counties included in the study region, investigators collected and consolidated existing, secondary data representing multiple aspects of objective well-being. To conduct a longitudinal assessment of changing wellbeing and environmental conditions, data were collected for the period of 2000 to 2010. The team focused on the Gulf of Mexico because the development of a baseline of well-being would allow NOAA and other agencies to better understand progress made toward recovery in communities affected by the Deepwater Horizon oil spill. However, the broader purpose of the project was to conceptualize and develop an approach that could be adapted to monitor how coastal communities are doing in relation to a variety of ecosystem disruptions and associated interventions across all coastal regions in the U.S. and its Territories. The method and models developed provide substantial insight into the structure and significance of relationships between community well-being and environmental conditions. Further, this project has laid the groundwork for future investigation, providing a clear path forward for integrated monitoring of our nation’s coasts. The research and monitoring capability described in this document will substantially help counties, local organizations, as well state and federal agencies that are striving to improve all facets of community well-being.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ecological integrity of coral reef ecosystems in the U.S. Caribbean is widely considered to have deteriorated in the last three decades due to a range of threats and stressors from both human and non-human processes Rothenberger 2008, Wilkinson 2008). In response to the threats to Caribbean coral reef ecosystems and other regions around the world, the United States Government authorized the Coral Reef Conservation Act of 2000 to: (1) preserve, sustain, and restore the condition of coral reef ecosystems; (2) promote the wise management and sustainable use of coral reef ecosystems to benefit local communities and the Nation; and (3) develop sound scientific information on the condition of coral reef ecosystems and the threats to such ecosystems. The Act also resulted in the formation of a National Coral Reef Action Strategy and a Coral Reef Conservation Program. The Action Strategy (Goal 2 of Action Theme 1) outlined the importance of monitoring and assessing coral reef health as a mechanism toward reducing many threats to these ecosystems. Monitoring was considered of high importance in addressing impacts from climate change; disease; overfishing; destructive fishing practices; habitat destruction; invasive species; coastal development; coastal pollution; sedimentation/runoff and overuse from tourism. The strategy states that successful coral reef ecosystem conservation requires adaptive management that responds quickly to changing environmental conditions. This, in turn, depends on monitoring programs that track trends in coral reef ecosystem health and reveal patterns in their condition before irreparable harm occurs. As such, monitoring plays a vital role in guiding and supporting the establishment of complex or potentially controversial management strategies such as no-take ecological reserves, fishing gear restrictions, or habitat restoration, by documenting the impacts of gaps in existing management schemes and illustrating the effectiveness of new measures over time. Long-term monitoring is also required to determine the effectiveness of various management strategies to conserve and enhance coral reef ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gap Analysis of Marine Ecosystem Data project is a review of available geospatial data which can assist in marine natural resource management for eight park units. The project includes the collection of geospatial information and its incorporation in a single consistent geodatabase format. The project also includes a mapping portal which can be seen at: http://ccma.nos.noaa.gov/explorer/gapanalysis/gap_analysis.html In addition to the collection of geospatial information and mapping portal we have conducted a gap analysis of a standard suite of available information for managing marine resources. Additional gap were identified by interviewing park service staff.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hawaii’s coastal marine resources have declined dramatically over the past 100 years due to multiple anthropogenic stressors including overfishing, coastal development, pollution, overuse, invasive species and climate change. It is now becoming evident that ecosystem-based management, in the form of marine protected areas (MPAs), is necessary to conserve biodiversity, maintain viable fisheries, and deliver a broad suite of ecosystem services. Over the past four decades, Hawaii has developed a system of MPAs to conserve and replenish marine resources around the state. These Marine Life Conservation Districts (MLCDs) vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning MPA design and function using multiple discreet sampling units. NOAA/NOS/NCCOS/Center for Coastal Monitoring and Assessment’s Biogeography Branch used digital benthic habitat maps coupled with comprehensive ecological studies between 2002 and 2004 to evaluate the efficacy of all existing MLCDs using a spatially-explicit stratified random sampling design. The results from this work have shown that areas fully protected from fishing had higher fish biomass, larger overall fish size, and higher biodiversity than adjacent areas of similar habitat quality. Other key findings demonstrated that top predators and other important fisheries species were more abundant and larger in the MPAs, illustrating the effectiveness of these closures in conserving these populations. Habitat complexity, protected area size and habitat diversity were the major factors in determining effectiveness among MPAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gray’s Reef National Marine Sanctuary (GRNMS) is located 32.4 km offshore of Sapelo Island, Georgia. The ecological importance of this area is related to the transition between tropical and temperate waters, and the existence of a topographically complex system of ledges. Due to its central location, GRNMS can be used as a focal site to study the accumulation and impacts of marine debris on the Atlantic continental shelf offshore of the Southeast United States. Previously, researchers characterized marine debris in GRNMS and reported that incidence of the debris at the limited densely colonized ledge sites was significantly greater than at sand or sparsely colonized live bottom, and is further influenced by the level of boating activity and physiographic characteristics (e.g., ledge height). Information gleaned from the initial marine debris characterization was used to devise a strategy for prioritizing cleanup and monitoring efforts. However, a significant gap in knowledge was the rate of debris accumulation. The primary objective of this study was to select, mark, and perform initial marine debris surveys at permanent monitoring sites within GRNMS to quantify long-term trends in types, abundance, impacts, and accumulation rates of debris. Ledge sites were selected to compare types, abundance, and accumulation rates of marine debris between a) areas of high and low use and b) short and tall ledges. Nine permanent monitoring sites were marked and initially surveyed in 2007/2008. Surveys were conducted within a 50 x 4 m transect for a total survey area of 200 square meters. All debris was removed and detailed information was taken on the types of debris, quantity, and associations with benthic fauna. Information on associations with benthic fauna included degree of entanglement, type of organism with which it is entangled or resting on, degree of fouling, and visible impacts such as tissue abrasions. Sites were re-surveyed approximately one year later to quantify new accumulation. During the initial survey, a total of ten debris items, totaling 16.3 kg in weight, were removed from two monitoring stations, both “tall” sites within the area of high boat use. Year-one accumulation totaled five items and approximately 7 kg in weight. Similar to the initial survey, all debris was found at sites in the area of high boat use. However, in contrast to the initial survey, two of these items were found on medium-height ledges. Removed items included fishing line, leaders, rope, plastic, and fabric. Although items were often encrusted in benthic biota or entangled on the ledge, impacts such as abrasions or other injuries were not observed. During the 2009 monitoring efforts, volunteer divers were trained to conduct the survey. Monitoring protocols were documented for GRNMS staff and included as an appendix of this report to enable long-term monitoring of sites. Additionally, national reconnaissance data (e.g. satellite, radar, aerial surveys) and other information on known fishing locations were examined for patterns of resource use and correlations with debris occurrence patterns. A previous model predicting the density of marine debris based on ledge features and boat use was refined and the results were used to generate a map of predicted debris density for all ledges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary objective of this study was to assess the efficacy of the Virgin Islands Coral Reef National Monument (VICR), a marine protected area in St John, US Virgin Islands. Surveys of habitat and fishes inside and outside of VICR were conducted in 2003-2008. Areas outside the VICR had significantly more scleractinian corals, greater habitat complexity, and greater species richness and density of reef fishes than areas inside., Areas inside and outside the VICR exhibited significant decreases in percent scleractinian coral coverage over the study period. A contrasting trend of increasing macroalgal cover was also observed. No clear effect of the severe 2005 coral bleaching event was observed suggesting other causal factors. No obvious trends in the fish community were observed across the study period. The significant decline in habitat condition, coupled with the initial incorporation of some of the more degraded reefs into the marine protected area may result in a longer time period necessary to detect positive changes in the St. John coral reef ecosystem and associated reef fish abundance and community structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land-based pollution is commonly identified as a major contributor to the observed deterioration of shallow-water coral reef ecosystem health. Human activity on the coastal landscape often induces nutrient enrichment, hypoxia, harmful algal blooms, toxic contamination and other stressors that have degraded the quality of coastal waters. Coral reef ecosystems throughout Puerto Rico, including Jobos Bay, are under threat from coastal land uses such as urban development, industry and agriculture. The objectives of this report were two-fold: 1. To identify potentially harmful land use activities to the benthic habitats of Jobos Bay, and 2. To describe a monitoring plan for Jobos Bay designed to assess the impacts of conservation practices implemented on the watershed. This characterization is a component of the partnership between the U.S. Department of Agriculture (USDA) and the National Oceanic and Atmospheric Administration (NOAA) established by the Conservation Effects Assessment Project (CEAP) in Jobos Bay. CEAP is a multi-agency effort to quantify the environmental benefits of conservation practices used by private landowners participating in USDA programs. The Jobos Bay watershed, located in southeastern Puerto Rico, was selected as the first tropical CEAP Special Emphasis Watershed (SEW). Both USDA and NOAA use their respective expertise in terrestrial and marine environments to model and monitor Jobos Bay resources. This report documents NOAA activities conducted in the first year of the three-year CEAP effort in Jobos Bay. Chapter 1 provides a brief overview of the project and background information on Jobos Bay and its watershed. Chapter 2 implements NOAA’s Summit to Sea approach to summarize the existing resource conditions on the watershed and in the estuary. Summit to Sea uses a GIS-based procedure that links patterns of land use in coastal watersheds to sediment and pollutant loading predictions at the interface between terrestrial and marine environments. The outcome of Summit to Sea analysis is an inventory of coastal land use and predicted pollution threats, consisting of spatial data and descriptive statistics, which allows for better management of coral reef ecosystems. Chapters 3 and 4 describe the monitoring plan to assess the ecological response to conservation practices established by USDA on the watershed. Jobos Bay is the second largest estuary in Puerto Rico, but has more than three times the shoreline of any other estuarine area on the island. It is a natural harbor protected from offshore wind and waves by a series of mangrove islands and the Punta Pozuelo peninsula. The Jobos Bay marine ecosystem includes 48 km² of mangrove, seagrass, coral reef and other habitat types that span both intertidal and subtidal areas. Mapping of Jobos Bay revealed 10 different benthic habitats of varying prevalence, and a large area of unknown bottom type covering 38% of the entire bay. Of the known benthic habitats, submerged aquatic vegetation, primarily seagrass, is the most common bottom type, covering slightly less than 30% of the bay. Mangroves are the dominant shoreline feature, while coral reefs comprise only 4% of the total benthic habitat. However, coral reefs are some of the most productive habitats found in Jobos Bay, and provide important habitat and nursery grounds for fish and invertebrates of commercial and recreational value.