25 resultados para state of nature
em Aquatic Commons
Resumo:
Written in response to "A proposal for sea otter protection and research and request for the return of management to the State of California" report published by the California Department of Fish and Game in 1976. (52 page document)
Resumo:
v.1 - Text and Summaries (272 page document)
Resumo:
During the summer of 1997, we surveyed 50 waterbodies in Washington State to determine the distribution of the aquatic weevil Euhrychiopsis lecontei Dietz. We collected data on water quality and the frequency of occurrence of watermilfoil species within selected watermilfoil beds to compare the waterbodies and determine if they were related to the distribution E. lecontei . We found E. lecontei in 14 waterbodies, most of which were in eastern Washington. Only one lake with weevils was located in western Washington. Weevils were associated with both Eurasian ( Myriophyllum spicatum L.) and northern watermilfoil ( M. sibiricum K.). Waterbodies with E. lecontei had significantly higher ( P < 0.05) pH (8.7 ± 0.2) (mean ± 2SE), specific conductance (0.3 ± 0.08 mS cm -1 ) and total alkalinity (132.4 ± 30.8 mg CaCO 3 L -1 ). We also found that weevil presence was related to surface water temperature and waterbody location ( = 24.3, P ≤ 0.001) and of all the models tested, this model provided the best fit (Hosmer- Lemeshow goodness-of-fit = 4.0, P = 0.9). Our results suggest that in Washington State E. lecontei occurs primarily in eastern Washington in waterbodies with pH ≥ 8.2 and specific conductance ≥ 0.2 mS cm -1 . Furthermore, weevil distribution appears to be correlated with waterbody location (eastern versus western Washington) and surface water temperature.
Resumo:
Includes Exotic Mollusca in California, by G. Dallas Hanna p.298-321.(PDF contains 57 pages.)
Resumo:
Executive Summary: For over three decades, scientists have been documenting the decline of coral reef ecosystems, amid increasing recognition of their value in supporting high biological diversity and their many benefits to human society. Coral reef ecosystems are recognized for their benefits on many levels, such as supporting economies by nurturing fisheries and providing for recreational and tourism opportunities, providing substances useful for medical purposes, performing essential ecosystem services that protect against coastal erosion, and provid-ing a diversity of other, more intangible contributions to many cultures. In the past decade, the increased awareness regarding coral reefs has prompted action by governmental and non-governmental organizations, including increased funding from the U.S. Congress for conservation of these important ecosystems and creation of the U.S. Coral Reef Task Force (USCRTF) to coordinate activities and implement conservation measures [Presidential Executive Order 13089]. Numerous partnerships forged among Federal agencies and state, local, non-governmental, academic and private partners support activities that range from basic science to systematic monitoring of ecosystem com-ponents and are conducted by government agencies, non-governmental organizations, universities, and the private sector. This report shares the results of many of these efforts in the framework of a broad assessment of the condition of coral reef ecosystems across 14 U.S. jurisdictions and Pacific Freely Associated States. This report relies heavily on quantitative, spatially-explicit data that has been collected in the recent past and comparisons with historical data, where possible. The success of this effort can be attributed to the dedication of over 160 report contributors who comprised the expert writing teams for each jurisdiction. The content of the report chapters are the result of their considerable collaborative efforts. The writing teams, which were organized by jurisdiction and comprised of experts from numerous research and management institutions, were provided a basic chapter outline and a length limit, but the content of each chapter was left entirely to their discretion. Each jurisdictional chapter in the report is structured to: 1) describe how each of the primary threats identified in the National Coral Reef Action Strategy (NCRAS) has manifested in the jurisdiction; 2) introduce ongoing monitoring and assessment activities relative to three major categories of inquiry – water quality, benthic habitats, and associated biological communities – and provide summary results in a data-rich format; and 3) highlight recent management activities that promote conservation of coral reef ecosystems.
Resumo:
Executive Summary: Observations show that warming of the climate is unequivocal. The global warming observed over the past 50 years is due primarily to human-induced emissions of heat-trapping gases. These emissions come mainly from the burning of fossil fuels (coal, oil, and gas), with important contributions from the clearing of forests, agricultural practices, and other activities. Warming over this century is projected to be considerably greater than over the last century. The global average temperature since 1900 has risen by about 1.5ºF. By 2100, it is projected to rise another 2 to 11.5ºF. The U.S. average temperature has risen by a comparable amount and is very likely to rise more than the global average over this century, with some variation from place to place. Several factors will determine future temperature increases. Increases at the lower end of this range are more likely if global heat-trapping gas emissions are cut substantially. If emissions continue to rise at or near current rates, temperature increases are more likely to be near the upper end of the range. Volcanic eruptions or other natural variations could temporarily counteract some of the human-induced warming, slowing the rise in global temperature, but these effects would only last a few years. Reducing emissions of carbon dioxide would lessen warming over this century and beyond. Sizable early cuts in emissions would significantly reduce the pace and the overall amount of climate change. Earlier cuts in emissions would have a greater effect in reducing climate change than comparable reductions made later. In addition, reducing emissions of some shorter-lived heat-trapping gases, such as methane, and some types of particles, such as soot, would begin to reduce warming within weeks to decades. Climate-related changes have already been observed globally and in the United States. These include increases in air and water temperatures, reduced frost days, increased frequency and intensity of heavy downpours, a rise in sea level, and reduced snow cover, glaciers, permafrost, and sea ice. A longer ice-free period on lakes and rivers, lengthening of the growing season, and increased water vapor in the atmosphere have also been observed. Over the past 30 years, temperatures have risen faster in winter than in any other season, with average winter temperatures in the Midwest and northern Great Plains increasing more than 7ºF. Some of the changes have been faster than previous assessments had suggested. These climate-related changes are expected to continue while new ones develop. Likely future changes for the United States and surrounding coastal waters include more intense hurricanes with related increases in wind, rain, and storm surges (but not necessarily an increase in the number of these storms that make landfall), as well as drier conditions in the Southwest and Caribbean. These changes will affect human health, water supply, agriculture, coastal areas, and many other aspects of society and the natural environment. This report synthesizes information from a wide variety of scientific assessments (see page 7) and recently published research to summarize what is known about the observed and projected consequences of climate change on the United States. It combines analysis of impacts on various sectors such as energy, water, and transportation at the national level with an assessment of key impacts on specific regions of the United States. For example, sea-level rise will increase risks of erosion, storm surge damage, and flooding for coastal communities, especially in the Southeast and parts of Alaska. Reduced snowpack and earlier snow melt will alter the timing and amount of water supplies, posing significant challenges for water resource management in the West. (PDF contains 196 pages)
Resumo:
This Alliance for Coastal Technologies (ACT) workshop was convened to assess the availability and state of development of conductivity-temperature sensors that can meet the needs of coastal monitoring and management communities. Rased on the discussion, there are presently a number of commercial sensor options available, with a wide range of package configurations suitable for deployment in a range of coastal environments. However, some of the central questions posed in the workshop planning documents were left somewhat unresolved. The workshop description emphasized coastal management requirements and, in particular, whether less expensive, easily deployed, lower-resolution instruments might serve many management needs. While several participants expressed interest in this class of conductivity-temperature sensors, based on input from the manufacturers, it is not clear that simply relaxing the present level of resolution of existing instruments will result in instruments of significantly lower unit cost. Conductivity-temperature sensors are available near or under the $1,000 unit cost that was operationally defined at the workshop as a breakpoint for what might be considered to be a "low cost" sensor. For the manufacturers, a key consideration before undertaking the effort to develop lower cost sensors is whether there will be a significant market. In terms of defining "low cost," it was also emphasized that the "life cycle costs" for a given instrument must be considered (e.g., including personnel costs for deployment and maintenance). An adequate market survey to demonstrate likely applications and a viable market for lower cost sensors is needed. Another topic for the workshop was the introduction to the proposed ACT verification for conductivity-temperature sensors. Following a summary of the process as envisioned by ACT, initial feedback was solicited. Protocol development will be pursued further in a workshop involving ACT personnel and conductivity-temperature sensor manufacturers.[PDF contains 28 pages]
Resumo:
A study was conducted examining the structure of fish marketing in Kwara State and also the conduct of participants within the market structure. The performance of the marketing system was evaluated, highlighting bottlenecks in the system and means of overcoming them
Resumo:
The Cross River State (Nigeria) marine and freshwater artisanal capture fisheries are divided into 4 categories according to the type of resources being exploited. Schaefer's production model is applied to each of the fisheries to estimate the maximum sustainable yields (Ymax). The total potential yield for all the fisheries in natural waters is 178,650 tonnes/year. This potential is unlikely to be achieved as more fishermen are abandoning the occupation due to the scarcity of boats, outboard engines and nets. Even if the full potentials were realized the production would still be short of what the State should produce by about 30.5%. Investment opportunities which, if effected can help to narrow the gap between the available and the desired level of production are enumerated
Resumo:
The involvement of women in the marketing of frozen fish in Lagos State (Nigeria) was examined in this study. Two hundred questionnaires were administered to fish marketers in five markets randomly selected within the Lagos metropolis based on their storage capacities. These markets were Balogun (500 tones), Idumagbo and Idumota (250 tonnes each) Obalende and Epetedo (37.5 tonnes each). From the study results, a greater percentage of women (64.2%) are actively involved in marketing of frozen fish in the study areas. Over 56% of these traders are retailers while about 33% are wholesalers. More than 91% of the marketers were found to be literate. A high percentage of the frozen fish are imported (68%), 27% from coastal fishing and 5% from riverine fishing. The commonest fish in the markets were titus (34%), sardine (32%), hake 19%, catfish 10% and argentine 5%. Catfish has the highest profit margin. The greatest problem of these traders is the lack of modern storage facilities and where available, the erratic power supply constitutes a problem
Resumo:
This abstract summarises the 1953-1955 surveys of the distribution of benthos in the Rybinsk Reservoirs. It includes the mean biomass of benthos.
Resumo:
A list, comprising 129 species in 23 families, is presented of the fish commonly caught in 1992/93 in the commercial fisheries around Santarem, Para State, Brazil. The most important families were the Pimelodidae (22 spp.), Cichildae (20) and Serrasalmidae (15), and six species contribute over 50% of the catch in weight.
Resumo:
The black clam, Villorita cyprinoides, is the most important clam species landed in India. The State of Kerala has been, by far, the leading producer of the species. Nearly all the landings, about 25,000 tons (t)/year are harvested in Vembanad Lake, the largest estuary, 96 km (54 mi) long, on the west coast of India. Nearly 4,000 fishermen harvest the black clams year-round. They harvest most by hand while diving in waters from 2.1–2.7 m (7–9 ft) deep. Each collects 150–200 kg (3–5 bushels)/day. Upon returning from the harvesting beds, the fishermen and their families cook the clams and separate their meats from their shells using simple sieves. Fishermen’s wives sell the meats within their local villages and save some for their families to eat. The shells are sold through organized fishermen societies to various industries. A substantial quantity of sub-fossil black clam shells lies buried from 22–50 cm (9–20 in) beneath the lake sediments. They are dredged in a controlled manner and sold to the same industries. The stocks of black clams seem to be declining slowly in the southern part of the lake because the water has been getting fresher, but they are not declining in the northern half. A likely threat to the landings may be a lack of fishermen in the future.