3 resultados para connectedness
em Aquatic Commons
Resumo:
The mission of the National Oceanic and Atmospheric Administration (NOAA) is to understand and predict changes in the Earth’s environment and conserve and manage coastal and marine resources to meet our nation’s economic, social and environmental needs (NOAA, 2004). In meeting its marine stewardship responsibilities, NOAA seeks to ensure the sustainable use of resources and balance competing uses of coastal and marine ecosystems, recognizing both their human and natural components (NOAA, 2004). Authorities for executing these responsibilities come from over 90 separate pieces of Federal legislation, each with unique requirements and responsibilities. Few of these laws explicitly mandate an ecosystem approach to management (EAM) or supporting science. However, resource managers, the science community, and increasingly, the public, are recognizing that significantly greater connectedness among the scientific disciplines is needed to support management and stewardship responsibilities (Browman and Stergiou, 2004; 2005). Neither NOAA nor any other science agency can meet the increasing demand for ecosystem science products addressing each of its mandates individually. Even if it was possible, doing so would not provide the integration necessary to solve the increasingly complex array of management issues. This focus on the integration of science and management responsibilities into an ecosystem view is one of the centerpieces of the U.S. Commission on Ocean Policy’s report (USCOP, 2004), and the Administration’s response to that report in the U.S. Ocean Action Plan (CEQ, 2004). (PDF contains 100 pages)
Resumo:
In this paper we present livestock breeding developments that could be taken into consideration in the genetic improvement of farmed aquaculture species, especially in freshwater fish. Firstly, the current breeding objective in aquatic species has focused almost exclusively on the improvement of body weight at harvest or on growth related traits. This is unlikely to be sufficient to meet the future needs of the aquaculture industry. To meet future demands breeding programs will most likely have to include additional traits, such as fitness related ones (survival, disease resistance), feed efficiency, or flesh quality, rather than only growth performance. In order to select for a multi-trait breeding objective, genetic variation in traits of interest and the genetic relationships among them need to be estimated. In addition, economic values for these traits will be required. Generally, there is a paucity of data on variable and fixed production costs in aquaculture, and this could be a major constraint in the further expansion of the breeding objectives. Secondly, genetic evaluation systems using the restricted maximum likelihood method (REML) and best linear unbiased prediction (BLUP) in a framework of mixed model methodology could be widely adopted to replace the more commonly used method of mass selection based on phenotypic performance. The BLUP method increases the accuracy of selection and also allows the management of inbreeding and estimation of genetic trends. BLUP is an improvement over the classic selection index approach, which was used in the success story of the genetically improved farmed tilapia (GIFT) in the Philippines, with genetic gains from 10 to 20 per cent per generation of selection. In parallel with BLUP, optimal genetic contribution theory can be applied to maximize genetic gain while constraining inbreeding in the long run in selection programs. Thirdly, by using advanced statistical methods, genetic selection can be carried out not only at the nucleus level but also in lower tiers of the pyramid breeding structure. Large scale across population genetic evaluation through genetic connectedness using cryopreserved sperm enables the comparison and ranking of genetic merit of all animals across populations, countries or years, and thus the genetically superior brood stock can be identified and widely used and exchanged to increase the rate of genetic progress in the population as a whole. It is concluded that sound genetic programs need to be established for aquaculture species. In addition to being very effective, fully pedigreed breeding programs would also enable the exploration of possibilities of integrating molecular markers (e.g., genetic tagging using DNA fingerprinting, marker (gene) assisted selection) and reproductive technologies such as in-vitro fertilization using cryopreserved spermatozoa.
Resumo:
The intersection of social and environmental forces is complex in coastal communities. The well-being of a coastal community is caught up in the health of its environment, the stability of its economy, the provision of services to its residents, and a multitude of other factors. With this in mind, the project investigators sought to develop an approach that would enable researchers to measure these social and environmental interactions. The concept of well-being proved extremely useful for this purpose. Using the Gulf of Mexico as a regional case study, the research team developed a set of composite indicators to be used for monitoring well-being at the county-level. The indicators selected for the study were: Social Connectedness, Economic Security, Basic Needs, Health, Access to Social Services, Education, Safety, Governance, and Environmental Condition. For each of the 37 sample counties included in the study region, investigators collected and consolidated existing, secondary data representing multiple aspects of objective well-being. To conduct a longitudinal assessment of changing wellbeing and environmental conditions, data were collected for the period of 2000 to 2010. The team focused on the Gulf of Mexico because the development of a baseline of well-being would allow NOAA and other agencies to better understand progress made toward recovery in communities affected by the Deepwater Horizon oil spill. However, the broader purpose of the project was to conceptualize and develop an approach that could be adapted to monitor how coastal communities are doing in relation to a variety of ecosystem disruptions and associated interventions across all coastal regions in the U.S. and its Territories. The method and models developed provide substantial insight into the structure and significance of relationships between community well-being and environmental conditions. Further, this project has laid the groundwork for future investigation, providing a clear path forward for integrated monitoring of our nation’s coasts. The research and monitoring capability described in this document will substantially help counties, local organizations, as well state and federal agencies that are striving to improve all facets of community well-being.