36 resultados para Small Area Estimation

em Aquatic Commons


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The broad scale features in the horizontal, vertical, and seasonal distribution of phytoplankton chlorophyll a on the northeast U.S. continental shelf are described based on 57,088 measurements made during 78 oceanographic surveys from 1977 through 1988. Highest mean water column chlorophyll concentration (Chlw,) is usually observed in nearshore areas adjacent to the mouths of the estuaries in the Middle Atlantic Bight (MAB), over the shallow water on Georges Bank, and a small area sampled along the southeast edge of Nantucket Shoals. Lowest Chlw «0.125 ug l-1) is usually restricted to the most seaward stations sampled along the shelf-break and the central deep waters in the Gulf of Maine. There is at least a twofold seasonal variation in phytoplankton biomass in all areas, with highest phytoplankton concentrations (m3) and highest integrated standing stocks (m2) occurring during the winter-spring (WS) bloom, and the lowest during summer, when vertical density stratification is maximal. In most regions, a secondary phytoplankton biomass pulse is evident during convective destratification in fall, usually in October. Fall bloom in some areas of Georges Bank approaches the magnitude of the WS-bloom, but Georges Bank and Middle Atlantic Bight fall blooms are clearly subordinate to WS-blooms. Measurements of chlorophyll in two size-fractions of the phytoplankton, netplankton (>20 um) and nanoplankton «20 um), revealed that the smaller nanoplankton are responsible for most of the phytoplankton biomass on the northeast U.S. shelf. Netplankton tend to be more abundant in nearshore areas of the MAB and shallow water on Georges Bank, where chlorophyll a is usually high; nanoplankton dominate deeper water at the shelf-break and deep water in the Gulf of Maine, where Chlw is usually low. As a general rule, the percent of phytoplankton in the netplankton size-fraction increases with increasing depth below surface and decreases proceeding offshore. There are distinct seasonal and regional patterns in the vertical distribution of chlorophyll a and percent netplankton, as revealed in composite vertical profiles of chlorophyll a constructed for 11 layers of the water column. Subsurface chlorophyll a maxima are ubiquitous during summer in stratified water. Chlorophyll a in the subsurface maximum layer is generally 2-8 times the concentration in the overlying and underlying water and approaches 50 to 75% of the levels observed in surface water during WS-bloom. The distribution of the ratio of the subsurface maximum chlorophyll a to surface chlorophyll a (SSR) during summer parallels the shelfwide pattern for stability, indexed as the difference in density (sigma-t) between 40 m and surface (stability 40. The weakest stability and lowest SSR's are found in shallow tidally-mixed water on Georges Bank; the greatest stability and highest SSR's (8-12:1) are along the mid and outer MAB shelf, over the winter residual water known as the "cold band." On Georges Bank, the distribution of SSR and the stability40 are roughly congruent with the pattern for maximum surface tidal current velocity, with values above 50 cms-1 defining SSR's less than 2:1 and the well-mixed area. Physical factors (bathymetry, vertical mixing by strong tidal currents, and seasonal and regional differences in the intensity and duration of vertical stratification) appear to explain much of the variability in phytoplankton chlorophyll a throughout this ecosystem. (PDF file contains 126 pages.)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this paper is to summarize the biggest northern California floods of the 20th century. Flooding in California can occur from different causes. At least three types of floods occur: 1. Winter general floods, which cover a large area. 2. Spring and early summer snowmelt floods unique to the higher-elevation central and southern Sierra Nevada, which occur about once in 10 years on the average. 3. Local floods from strong thunderstorms, with intense rain over a relatively small area. These originate in moist tropical or subtropical air and include the flash floods of the desert and other areas of southern California when remnants of eastern Pacific hurricanes get carried into the state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sea bottom of the Wadge and Pedro Banks are covered with hard corals and rocks, which cause frequent damages to the net and sometimes total loss of the gear (Hamuro, 1966). This has been one of the main reasons why trawling had been restricted to a small area of the Wadge Bank until recent years.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Red drum is one ofthe most popular species sought by anglers in Florida Bay, yet juveniles are rarely encountered. We evaluated Florida Bay as a nursery area for red drum by sampling for recently-settled late larvae in basin areas within the bay with an epi-benthic sled at six stations in November 2000, and at seven stations during December 2000 through February 2001. In November 2000 we surveyed potential sampling sites in quiet backwaters adjacent to mangroves for juvenile red drum. A total of 202 sites were sampled mainly in northern Florida Bay and adjacent waters with a cast net. We collected only one recently-settled red drum larvae and no juveniles. Obviously the sites that we sampled in Florida Bay and adjacent waters are not nursery habitat for this valuable species. Sled collections were dominated by bay anchovy, Anchoa mitchilli, but densities were biased by one collection. Five small resident species were among the dominant species: rainwater killifish, Lucania parva; dusky pipefish, Syngnathus floridae; dwarf seahorse, Hippocampus zosterae; and clown goby, Microgobius gulosus. Three species that spawn outside Florida Bay in the GulfofMexico were common: pinfish, Lagodon rhomboides; pigfish, Orthopristis chrysoptera; and silver perch, Bairdiella chrysoura. Twenty-seven species were collected with the cast net. Hardhead silversides (Atherinomorus stipes), bay anchovy, tidewater mojarra (Eucinostomus harengulus), silver jenny (Eucinostomus gula), and goldspotted killifish (Floridichthys carpio) were the most common in cast net collections. Although only one red drum was collected, we were able to: (1) identify mesohaline waters from our cast net sites to test our preliminary assessment that mesohaline habitat might be limited in Florida Bay, (2) document the distribution and abundance of fishes collected by cast net that should enhance our understanding of ichthyofauna in the Northern Subdivision ofFlorida Bay and adjacent waters, and (3) from epibenthic sled collections, describe the habitats, abundance and distribution of recently settled larvae/small juveniles/small resident fishes during late fall and winter. This information should be useful to managers and future research. (PDF contains 34 pages)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nearshore fisheries in the tropical Pacific play an important role, both culturally and as a reliable source of food security, but often remain under-reported in statistics, leading to undervaluation of their importance to communities. We re-estimated nonpelagic catches for Guam and the Commonwealth of the Northern Mariana Islands (CNMI), and summarize previous work for American Samoa for 1950−2002. For all islands combined, catches declined by 77%, contrasting with increasing trends indicated by reported data. For individual island entities, re-estima-tion suggested declines of 86%, 54%, and 79% for Guam, CNMI, and American Samoa, respectively. Except for Guam, reported data primarily represented commercial catches, and hence under-represented contributions by subsistence and recreational fisheries. Guam’s consistent use of creel surveys for data collection resulted in the most reliable reported catches for any of the islands considered. Our re-estimation makes the scale of under-reporting of total catches evident, and provides valuable baselines of likely historic patterns in fisheries catches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From a manager’s perspective, oftentimes the publicly held concerns related to small docks and piers are not really related to the environment. They may be more related to visual impacts and aesthetic concerns, a sense of over-development of the shore, or simply change. While individuals may hold personal aesthetic values related to small docks in general or an individual structure in particular, techniques have evolved that appear to provide reproducible, predictive assessments of the visual impacts and aesthetic values of an area and how those might change with development, including an increase in numbers of small docks. These assessments may be used to develop regulatory or non-regulatory methods for the management of small docks based on state or community standards. Visual impact assessments are increasingly used in the regulatory review of proposed development—although this process is still in its infancy as regards small docks and piers. Some political jurisdictions have established visual impact or aesthetic standards as relate to docks and others are in the process of investigating how to go about such an effort. (PDF contains 42 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Executive Summary: Tropical marine ecosystems in the Caribbean region are inextricably linked through the movement of pollutants, nutrients, diseases, and other stressors, which threaten to further degrade coral reef communities. The magnitude of change that is occurring within the region is considerable, and solutions will require investigating pros and cons of networks of marine protected areas (MPAs), cooperation of neighboring countries, improved understanding of how external stressors degrade local marine resources, and ameliorating those stressors. Connectivity can be broadly defined as the exchange of materials (e.g., nutrients and pollutants), organisms, and genes and can be divided into: 1) genetic or evolutionary connectivity that concerns the exchange of organisms and genes, 2) demographic connectivity, which is the exchange of individuals among local groups, and 3) oceanographic connectivity, which includes flow of materials and circulation patterns and variability that underpin much of all these exchanges. Presently, we understand little about connectivity at specific locations beyond model outputs, and yet we must manage MPAs with connectivity in mind. A key to successful MPA management is how to most effectively work with scientists to acquire the information managers need. Oceanography connectivity is poorly understood, and even less is known about the shape of the dispersal curve for most species. Dispersal kernels differ for various systems, species, and life histories and are likely highly variable in space and time. Furthermore, the implications of different dispersal kernels on population dynamics and management of species is unknown. However, small dispersal kernels are the norm - not the exception. Linking patterns of dispersal to management options is difficult given the present state of knowledge. The behavioral component of larval dispersal has a major impact on where larvae settle. Individual larval behavior and life history details are required to produce meaningful simulations of population connectivity. Biological inputs are critical determinants of dispersal outcomes beyond what can be gleaned from models of passive dispersal. There is considerable temporal and spatial variation to connectivity patterns. New models are increasingly being developed, but these must be validated to understand upstream-downstream neighborhoods, dispersal corridors, stepping stones, and source/sink dynamics. At present, models are mainly useful for providing generalities and generating hypotheses. Low-technology approaches such as drifter vials and oceanographic drogues are useful, affordable options for understanding local connectivity. The “silver bullet” approach to MPA design may not be possible for several reasons. Genetic connectivity studies reveal divergent population genetic structures despite similar larval life histories. Historical stochasticity in reproduction and/or recruitment likely has important, longlasting consequences on present day genetic structure. (PDF has 200 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ENGLISH: Age composition of catch, and growth rate, of yellowfin tuna have been estimated by Hennemuth (1961a) and Davidoff (1963). The relative abundance and instantaneous total mortality rate of yellowfin tuna during 1954-1959 have been estimated by Hennenmuth (1961b). It is now possible to extend this work, because more data are available; these include data for 1951-1954, which were previously not available, and data for 1960-1962, which were collected subsequent to Hennemuth's (1961b) publication. In that publication, Hennemuth estimated the total instantaneous mortality rate (Z) during the entire time period a year class is present in the fishery following full recruitment. However, this method may lead to biased estimates of abundance, and hence mortality rates, because of both seasonal migrations into or out of specific fishing areas and possible seasonal differences in availability or vulnerability of the fish to the fishing gear. Schaefer, Chatwin and Broadhead (1961) and Joseph etl al. (1964) have indicated that seasonal migrations of yellowfin occur. A method of estimating mortality rates which is not biased by seasonal movements would be of value in computations of population dynamics. The method of analysis outlined and used in the present paper may obviate this bias by comparing the abundance of an individual yellowfin year class, following its period of maximum abundance, in an individual area during a specific quarter of the year with its abundance in the same area one year later. The method was suggested by Gulland (1955) and used by Chapman, Holt and Allen (1963) in assessing Antarctic whale stocks. This method, and the results of its use with data for yellowfin caught in the eastern tropical Pacific from 1951-1962 are described in this paper. SPANISH: La composición de edad de la captura, y la tasa de crecimiento del atún aleta amarilla, han sido estimadas por Hennemuth (1961a) y Davidoff (1963). Hennemuth (1961b), estimó la abundancia relativa y la tasa de mortalidad total instantánea del atún aleta amarilla durante 1954-1959. Se puede ampliar ahora, este trabajo, porque se dispone de más datos; éstos incluyen datos de 1951 1954, de los cuales no se disponía antes, y datos de 1960-1962 que fueron recolectados después de la publicación de Hennemuth (1961b). En esa obra, Hennemuth estimó la tasa de mortalidad total instantánea (Z) durante todo el período de tiempo en el cual una clase anual está presente en la pesquería, consecutiva al reclutamiento total. Sin embargo, este método puede conducir a estimaciones con bias (inclinación viciada) de abundancia, y de aquí las tasas de mortalidad, debidas tanto a migraciones estacionales dentro o fuera de las áreas determinadas de pesca, como a posibles diferencias estacionales en la disponibilidad y vulnerabilidad de los peces al equipo de pesca. Schaefer, Chatwin y Broadhead (1961) y Joseph et al. (1964) han indicado que ocurren migraciones estacionales de atún aleta amarilla. Un método para estimar las tasas de mortalidad el cual no tuviera bias debido a los movimientos estacionales, sería de valor en los cómputos de la dinámica de las poblaciones. El método de análisis delineado y usado en el presente estudio puede evitar este bias al comparar la abundancia de una clase anual individual de atún aleta amarilla, subsecuente a su período de abundancia máxima en un área individual, durante un trimestre específico del año, con su abundancia en la misma área un año más tarde. Este método fue sugerido por Gulland (1955) y empleado por Chapman, Holt y Allen (1963) en la declaración de los stocks de la ballena antártica. Este método y los resultados de su uso, en combinación con los datos del atún aleta amarilla capturado en el Pacífico oriental tropical desde 1951-1962, son descritos en este estudio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RRAs were carried out in two Small Tank Cascade systems (STCs) of North West Province, Sri Lanka (less than 1000 ha total watershed area). A total of 21 tanks and 7 villages were investigated with primary emphasis on two upper watershed communities. The two systems differ primarily in their resource base; namely rainfall, natural forests and proximity to large scale perennial irrigation resources. [PDF contains 86 pages]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is increasing awareness of aquaculture in Nigeria today for a number of reasons namely: water pollution, declining catch and the awareness of the attractiveness of aquaculture as an investment area and a pivotal point for national development. The development of aquaculture in Nigeria, requires the building up of institutions at the grassroot level and the formulation of policies and programmes for the small fishfarmer. This of course would be backed up by a sound technology generation, verification and packaging, dissemination and use programme

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ENGLISH: Estimates of relative annual abundance of yellowfin tuna in the eastern Pacific Ocean during 1970-1985 are made using catch rates, measured as tons caught by purse seiners per hour of searching. Catch rates are standardized a weighted generalized linear model. The important standardizing factors are vessel speed, season-area, and whether the yellowfin were caught in association with dolphins, skipjack tuna, or floating objects. Observations are weighted to give equal areas equal weight and to give each unit of fishing effort equal weight within an area. The results indicate that catch per days fishing underestimates abundance during the late 1970's when the fishery shifted some of its effort from dolphin sets to floating object sets, and overestimates abundance when the fishery shifted back to dolphin sets in 1984 and 1985. SPANISH: Se estima la abundancia anual relativa del atún aleta amarilla en el Océano Pacífico oriental (OPO) durante 1970-1985 por medio de tasas de captura, calculadas como toneladas cortas capturadas por barcos cerqueros por hora de búsqueda. Se usa un modelo lineal ponderado generalizado para estandardizar las tasas de captura. Los factores importantes de estandardización son la velocidad del barco, temporada-área, y si se capturaron los aletas amarillas en asociación con delfines, barriletes, o objetos flotantes. Se ponderaron las observaciones para otorgar igual importancia a áreas iguales y a cada unidad de esfuerzo pesquero dentro de un área. Los resultados señalan que la captura por día de pesca estima por bajo la abundancia durante los últimos años de la década de los 70, en cual época la pesquería trasladó parte de su esfuerzo de lances sobre delfines a lances sobre objetos flotantes, y la sobreestima al volver la pesquería a lances sobre delfines en 1984 y 1985. (PDF contains 45 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ENGLISH: Monthly estimates of the abundance of yellowfin tuna by age groups and regions within the eastern Pacific Ocean during 1970-1988 are made, using purse-seine catch rates, length-frequency samples, and results from cohort analysis. The numbers of individuals caught of each age group in each logged purse-seine set are estimated, using the tonnage from that set and length-frequency distribution from the "nearest" length-frequency sample(s). Nearest refers to the closest length frequency sample(s) to the purse-seine set in time, distance, and set type (dolphin associated, floating object associated, skipjack associated, none of these, and some combinations). Catch rates are initially calculated as the estimated number of individuals of the age group caught per hour of searching. Then, to remove the effects of set type and vessel speed, they are standardized, using separate weiznted generalized linear models for each age group. The standardized catch rates at the center of each 2.5 0 quadrangle-month are estimated, using locally-weighted least-squares regressions on latitude, longitude and date, and then combined into larger regions. Catch rates within these regions are converted to numbers of yellowfin, using the mean age composition from cohort analysis. The variances of the abundance estimates within regions are large for 0-, 1-, and 5-year-olds, but small for 1.5- to 4-year-olds, except during periods of low fishing activity. Mean annual catch rate estimates for the entire eastern Pacific Ocean are significantly positively correlated with mean abundance estimates from cohort analysis for age groups ranging from 1.5 to 4 years old. Catch-rate indices of abundance by age are expected to be useful in conjunction with data on reproductive biology to estimate total egg production within regions. The estimates may also be useful in understanding geographic and temporal variations in age-specific availability to purse seiners, as well as age-specific movements. SPANISH: Se calculan estimaciones mensuales de la abundancia del atún aleta amarilla por grupos de edad y regiones en el Océano Pacífico oriental durante 1970-1988, usando tasas de captura cerquera, muestras de frecuencia de talla, y los resultados del análisis de cohortes. Se estima el número de individuos capturados de cada grupo de edad en cada lance cerquero registrado, usando el tonelaje del lance en cuestión y la distribución de frecuencia de talla de la(s) muestra(s) de frecuencia de talla "más cercana/s)," "Más cercana" significa la(s) muestra(s) de frecuencia de talla más parecida(s) al lance cerquero en cuanto a fecha, distancia, y tipo de lance (asociado con delfines, con objeto flotante, con barrilete, con ninguno de éstos, y algunas combinaciones). Se calculan inicialmente las tasas de captura como el número estimado de individuos del grupo de edad capturado por hora de búsqueda. A continuación, para eliminar los efectos del tipo de lance y la velocidad del barco, se estandardizan dichas tasas, usando un modelo lineal generalizado ponderado, para cada grupo por separado. Se estima la tasa de captura estandardizada al centro de cada cuadrángulo de 2.5°-mes, usando regresiones de mínimos cuadrados ponderados localmente por latitud, longitud, y fecha, y entonces combinándolas en regiones mayores. Se convierten las tasas de captura dentro de estas regiones en números de aletas amarillas individuales, usando el número promedio por edad proveniente del análisis de cohortes. Las varianzas de las estimaciones de la abundancia dentro de las regiones son grandes para los peces de O, 1, Y5 años de edad, pero pequeñas para aquellos de entre 1.5 Y4 años de edad, excepto durante períodos de poca actividad pesquera. Las estimaciones de la tasa de captura media anual para todo el Océano Pacífico oriental están correlacionadas positivamente de forma significativa con las estimaciones de la abundancia media del análisis de las cohortes para los grupos de edad de entre 1.5 y 4 años. Se espera que los índices de abundancia por edad basados en las tasas de captura sean útiles, en conjunto con datos de la biología reproductiva, para estimar la producción total de huevos por regiones. Las estimaciones podrían asimismo ser útiles para la comprensión de las variaciones geográficas y temporales de la disponibilidad específica por edad a los barcos cerqueros, y también las migraciones específicas por edad. (PDF contains 35 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monthly and seasonal water requirements of a small fish pond (0.068ha; maximum capacity of 613.83m super(3)) at the University of Agriculture, Makurdi Fish Farm (Benue, Nigeria) were determined during the period of February to August 1996. The sources of water for the pond were rainfall, (103.4cm), run-off (6.3cm) and regulated inflow (95.0cm). The water loss for the period were Evapotranspiration, (106.74cm), Seepage (71.64cm) and regulated discharge (25.00cm). Evapotranspiration was identified as the main source of water loss while rainfall was the major source of water gain. The mean monthly water deficit was 24.56~c11.43cm while the mean monthly surplus was 9.84~c8.05cm. The quantity of water required to maintain the optimal water level in the pond was 474.00m super(3). Preliminary water budget of the study area showed that rainfed aquaculture can be effectively carried out at Makurdi during the months of June to October with supplementary inflows during the dry season months

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract The rapid growth of both formal and informal high density urban settlements around major water resources has led to increased pollution of streams, rivers, lakes and estuaries, due to contaminated runoff from these developments. The paper identified major contaminants to be : organic waste (sewage), industrial effluent, pesticides and litter. Pollutant loads vary depending on the hydrology of the urban area, local topography and soil conditions. In some instances, severe pollution of neighbouring and downstream water courses has been observed. The management of catchment land uses, riparian zones, in stream habitat, as well as in stream water flow patterns and quality are necessary in order to sustain the integrity and "health" of water resources, for fisheries and other developments. As such, attempts to ensure a certain level of water quality without attention to other aspects will not automatically ensure a "healthy" ecosystem even as fish habitat. Proper management leads to better water quality and conducive environment for increased fish production