11 resultados para Skeletal modification
em Aquatic Commons
Resumo:
Clarias species purchased from fish mongers from Ado – Ekiti, Ikun Ekiti, Itapaji – Ekiti Nigeria were examined for possible deformities in any part of their body. A total number of 360, 140, and 40 fish samples were from Ado – Ekiti, Ikun – Ekiti, and Itapaji – Ekiti respectively. Deformities of various types were observed only from Ado – Ekiti collection. The deformities observed are malformed mouth, big head, stumpy body, and multiple vertebral deformities. The possible cause (s) of the deformities may be as a result of stress, pollution from human activities or other factors such as poor nutrition, hereditary, diseases, etc. but these causes has not been properly determined
Resumo:
In order to control the proliferation of floating aquatic vegetation in Côte d'Ivoire, a coastal inlet, allowing a direct communication between the Comoe river and the ocean, was created in September 1987. The impact of this operation on the hydrochemistry (salinity, nutrients, algal biomass) and the bacterial contamination level was studied in the area close to the Vridi canal.
Resumo:
We investigated age, growth, and ontogenetic effects on the proportionality of otolith size to fish size in laboratory-reared delta smelt (Hypomesus transpacificus) from the San Francisco Bay estuary. Delta smelt larvae were reared from hatching in laboratory mesocosms for 100 days. Otolith increments from known-age fish were enumerated to validate that growth increments were deposited daily and to validate the age of fish at first ring formation. Delta smelt were found to lay down daily ring increments; however, the first increment did not form until six days after hatching. The relationship between otolith size and fish size was not biased by age or growth-rate effects but did exhibit an interruption in linear growth owing to an ontogenetic shift at the postflexon stage. To back-calculate the size-at-age of individual fish, we modified the biological intercept (BI) model to account for ontogenetic changes in the otolith-size−fish-size relationship and compared the results to the time-varying growth model, as well as the modified Fry model. We found the modified BI model estimated more accurately the size-at-age from hatching to 100 days after hatching. Before back-calculating size-at-age with existing models, we recommend a critical evaluation of the effects that age, growth, and ontogeny can have on the otolith-size−fish-size relations
Resumo:
A simple modification of Pauly's model for relating food conversion efficiency (K sub(1)) and body weight is proposed. The key parameter is an index to how efficiently food can be absorbed; the other parameter is related to the surface-limiting growth, an important component of von Bertalanff's and Pauly's theories of fish growth.
Resumo:
In the Gulf of Mexico there is a need to assess the potential of underutilized fish resource stocks before a commercial fishery develops. Standard sampling trawls used in the Gulf are ineffective for sampling the resource, so larger, high opening, bottom trawls have been introduced. The larger trawls are more effective, but most of the faster swimming fish species are able to escape these nets, especially during haul back. To reduce fish escapement, webbing panels, attached inside the trawls ahead of the cod ends, were tested. Initial tests were conducted with two single panel designs--a fish flap and a "floppa." Neither design reduced fish escapement. The floppa distorted the trawl webbing and actually increased fish escapement. A multi-panel conical funnel design (the fish funnel) was tested and found to increase fish retention by trapping the fish after they passed through it. When used in combination with a technique known as pulsing the trawl, the fish funnel substantially increased trawl catch rates with no indication of fish escapement.
Resumo:
Understanding the phase and timing of ontogenetic habitat shifts underlies the study of a species’ life history and population dynamics. This information is especially critical to the conservation and management of threatened and endangered species, such as the loggerhead sea turtle Caretta caretta. The early life of loggerheads consists of a terrestrial egg and hatchling stage, a posthatchling and juvenile oceanic, pelagic feeding stage, and a juvenile neritic, primarily benthic feeding stage. In the present study, novel approaches were applied to explore the timing of the loggerhead ontogenetic shift from pelagic to benthic habitats. The most recent years of somatic growth are recorded as annual marks in humerus cross sections. A consistent growth mark pattern in benthic juvenile loggerheads was identified, with narrow growth marks in the interior of the bone transitioning to wider growth marks at the exterior, indicative of a sharp increase in growth rates at the transitional growth mark. This increase in annual growth is hypothesized to correlate with the ontogenetic shift from pelagic to benthic habitats. Stable isotopes of carbon and nitrogen just interior and exterior to the transitional growth mark, as well as stable isotopes from pelagic and benthic flora, fauna and loggerhead stomach contents, were analyzed to determine whether this transition related to a diet shift. The results clearly indicate that a dietary shift from oceanic/pelagic to neritic/benthic feeding corresponds to a transitional growth mark. The combination of stable isotope analysis with skeletochronology can elucidate the ecology of cryptic life history stages during loggerhead ontogeny.
Resumo:
Numerous studies have applied skeletochronology to sea turtle species. Because many of the studies have lacked validation, the application of this technique to sea turtle age estimation has been called into question. To address this concern, we obtained humeri from 13 known-age Kemp’s ridley (Lepidochelys kempii) and two loggerhead (Caretta caretta) sea turtles for the purposes of examining the growth marks and comparing growth mark counts to actual age. We found evidence for annual deposition of growth marks in both these species. Corroborative results were found in Kemp’s ridley sea turtles from a comparison of death date and amount of bone growth following the completion of the last growth mark (n=76). Formation of the lines of arrested growth in Kemp’s ridley sea turtles consistently occurred in the spring for animals that strand dead along the mid- and south U.S. Atlantic coast. For both Kemp’s ridley and loggerhead sea turtles, we also found a proportional allometry between bone growth (humerus dimensions) and somatic growth (straight carapace length), indicating that size-at-age and growth rates can be estimated from dimensions of early growth marks. These results validate skeletochronology as a method for estimating age in Kemp’s ridley and loggerhead sea turtles from the southeast United States.
Resumo:
Marine mammal diet is typically characterized by identifying fish otoliths and cephalopod beaks retrieved from stomachs and fecal material (scats). The use and applicability of these techniques has been the matter of some debate given inherent biases associated with the method. Recent attempts to identify prey using skeletal remains in addition to beaks and otoliths are an improvement; however, difficulties incorporating these data into quantitative analyses have limited results for descriptive analyses such as frequency of occurrence. We attempted to characterize harbor seal (Phoca vitulina) diet in an area where seals co-occur with several salmon species, some endangered and all managed by state or federal agencies, or both. Although diet was extremely variable within sampling date, season, year, and between years, the frequency and number of individual prey were at least two times greater for most taxa when prey structures in addition to otoliths were identified. Estimating prey mass in addition to frequency and number resulted in an extremely different relative importance of prey in harbor seal diet. These data analyses are a necessary step in generating estimates of the size, total number, and annual biomass of a prey species eaten by pinnipeds for inclusion in fisheries management plans.
Resumo:
Aspartate aminotransferase (E.C. 2.6.1.1.) from the skeletal muscle of fresh water fish Cirrhina mrigala has been purified 40 fold by ammonium sulphate fractionation, adsorption on alumina Csub(8) gel and chromatography using DEAE-cellulose column and the properties of the purified enzyme studied. The pH optimum of the enzyme is 7.8. The Km value of aspartic acid and 2-oxoglutaric acid are found to be 2.8 x 10sub(-3) M and 1.0 x 10sub(-4) M respectively. The activity of enzyme is inhibited by p-chloromercurybenzoate, hydroxylamine hydrochloride and sodium cyanide. The inhibition by pchloromercurybenzoate is reversed by reduced glutathione, B-mercaptoethanol and cysteine. Dicarboxylic acids such as maleic acid, malic acid and succinic acid inhibit the enzyme activity. The enzyme is not activated by any of the metal ions tested and heavy metal ions such as mercury and silver strongly inhibit the enzyme activity.
Resumo:
This paper brings out the difficulties encountered with the Bilge and sea water circulating pumps which are fitted and drawn in series along with a fresh water pump in the 17.5 m fishing trawlers.