314 resultados para Lakes--Lake Crawford.
em Aquatic Commons
Resumo:
Of all the great lakes, Lake Victoria has the highest population concentration on its fringes. This has resulted into serious human impacts on the ecosystem through intense agricultural activities (cultivation, livestock and over fishing), sporadic settlements, urbanization and industrial establishments. The consequences have been loss of animals and plant life, deforestation and general land degradation, pollution, loss of water quality and clean air. Aquatic life has become endangered and less guaranteeing to continued fish production. Awareness workshops and general talks have been done to a few selected communities by the lakes landing sites and in the catchment area to mitigate the deteriorating environmental conditions. Naturally the situation calls for reversal to the increasing stress of the ecosystem. As a result, every water body surveyed put forward some mitigation suggestions
Resumo:
Northern Ireland has approximately 1670 lakes, which cover 4.4% of the land surface. However, most of the water area is accounted for by the large lakes such as Lough Neagh (385 km2) and Lower Lough Erne (109.5 km ). The majority of lakes are less than 100 hectares in area. They tend to be distributed towards the south and west of the Province, where extensive drumlin swarms are rich in small waterbodies. In 1988-1991, 610 of the 708 lakes between one and 100 hectares were sampled by the Northern Ireland Lake Survey. The objective was to assess their conservation status based on their aquatic macrophyte flora, but in addition to extensive plant surveys, the water of each lake was analysed for a range of chemical variables. This article reports on a full-scale survey carried out in early March 2002. The survey was taken with help of two helicopters. The authorise summarise the results of the chemical analysis of the survey.
Resumo:
In the Ukraine there are several thousand large, medium and small lakes and lake-like reservoirs, distinguished by origin, salinity, regional position, productivity and by construction a significant number of large and small water bodies, ponds and industrial reservoirs of variable designation. The problem of national systems necessitates the creation of specific schemes and classifications. Classifying into specific types of reservoir by means of suitable specifications is required for planning national measures with the objective of the rational utilisation of natural resources. It is now necessary to consider the present-day characteristics of Ukranian lakes. In the case of the Ukraine it is possible to use two approaches - genetical and ecological. This paper uses the genetical system to classify the lake-like water bodies of the Ukraine.
Resumo:
The Nabugabo lakes are an important source of affordable protein food in the form of fish, income, water for domestic and commercial purposes (aquaculture farm and Hotels), handcraft materials (mats, hats, roof thatch) and fishing floats and rafts. Nabugabo lakes provide employment, income and export earnings to Uganda that flow from the act of harvesting the fish. In Uganda the fisheries sector directly employs 350,000 people and indirectly 1.2 million people. In 2005, it is estimated that about 370,000 mt fish export (97-98% Nile perch) earned Uganda US $ 143 Million up from US $ 103 million in 2004 .and up from US $ 45 million in 1996. , making it almost become the first non' traditional export commodity. The Nabugabo lakes are also import for cultural values and fish species from these lakes are important in evolutionary studies. The fishery sector is therefore very important in Uganda's socio-economic life. Despite the above values to the communities and global biodiversity roles, the amount of fish caught and the number fishing fleets operating on the Nabugabo lakes to guide management of the lake are lacking. The fishery that exists in these lakes is largely for subsistence and commercial purposes specific for Lake Nabugabo based on introduced species (Nile perch and Nile Tilapia). The fish is caught using mainly gill nets and long line hooks.
Resumo:
Lakes Victoria and Kyoga had, a diverse fish fauna, which was important as food for local population and valuable in scientific studies. Over the past twenty years, the diversity of fish in these lakes had declined due to over-exploitation, introduction of new fish species including the piscivorous Nile perch and degradation of fish habitat. Studies of satellite lakes in the Victoria and Kyoga lake basins suggested that some of these lakes harboured species which had been lost from the main lakes. In order to better understand the extent, to which these satellite lakes may serve as refugia, a faunal survey was undertaken to determine the distribution and nature of the taxa found. Seven satellite lakes and the eastern end of the main Lake Kyoga adjacent to these minor lakes were surveyed over a two-year period for fish species diversity. A total of 68 fish species were recorded of which 41 were haplochromines. Almost all the native non cichlids which occurred in the main lakes (Victoria and Kyoga) before the Nile perch upsurge recorded. Lakes Nawampasa, Gigati, Kawi, Agu and Nyaguo had the highest fish species and trophic diversity. The trophic diversity of haplochromines (based on Shannon Weaver Index) was highest in Lake Nawampasa (1.28), followed by Gigati (1.25), Kawi (1.18), Agu (0.8), Lemwa (0.81), Nyaguo (0.35) and was lowest in the main Lake Kyoga. Potential threats to these lakes were from collectors of ornamental fish species, especially the haplochromines, the spread of the predatory Nile perch and the water hyacinth, which are already in Lake Kyoga, and the destruction of macrophytes through harvesting of papyrus and reclamation for agriculture. The human population around these lakes harvested the fishes for food but the levels of exploitation were still low because the lakes were adjacent to main Lake Kyoga, the major supply of fish. Ornamental fish dealers were encouraged to start captive breeding of the fish for export to reduce pressure on the lakes and demonstrations for breeding were set up at FIRI in Jinja. Meetings and seminars were held with some of the communities living around the lakes sampled and the importance of fish species found in these lakes and the dangers of destructive practices discussed. Representatives of all taxa of fish caught from the lakes were preserved, catalogued and stored in the FIRI Museum. Results from this survey support the motion that these satellite lakes are important refugia for endemic diversity. Based on survey, we recommend that SaIne of these lakes like Nawampasa, Gigati, Kawi, Agu and Nyaguo could be designated as conservation areas of species threatened in the main lakes. One of the factors that seem to have prevented the spread of Nile perch into Kyoga Minor lakes seems to have been the presence of extensive swamps around these lakes and the low oxygen levels that exist in these habitats. Clearing of swamps and vegetation that separate Kyoga minor lakes from the main lake should be avoided to prevent Nile perch from spreading into these lakes.
Resumo:
Small pelagic fish species have ultimately become important on most of the Great Lakes of Africa, especially after the depletion of the larger, initially preferred fish species. In Lake Victoria, the small pelagic cyprinid Rastrineobola argentea is now the only abundant native species supporting a fast growing light fishery. In Pilkington Bay, off Lingira Island the artisanal light fishery is well established and in the last two years this bay has witnessed a sharp increase in the fishing effort. This has been followed by a modification of fishing method and a reduction in the mesh size of nets used. R. argentea now caught from this bay consist of mainly juveniles and this could result into localized recruitment overfishing. Drawing examples from what is happening to the fishery in Pilkington Bay, it is necessary to carry out research on the stocks, gear and suitable fishing crafts before light fishing spreads to most parts of the lake.
Resumo:
The Carr Lake Project aims to convert Carr Lake’s 450 acres of agriculture fields into a regional multi-use park that will benefit flood protection, water quality, and wildlife habitat, while also providing additional recreational areas for the local community. The Project is represented by an informal consortium of interested parties including the Watershed Institute of California State University Monterey Bay, The City of Salinas, 1000 Friends of Carr Lake, and the Big Sur Land Trust. (Document contains 54 pages)
Resumo:
Vancouver Lake, located adjacent to the Columbia River and just north of the Vancouver-Portland metropolitan area, is a "dying" lake. Although all lakes die naturally in geologic time through the process of eutrophication,* Vancouver Lake is dying more rapidly due to man's activities and due to the resultant increased accumulation of sediment, chemicals, and wastes. Natural eutrophication takes thousands of years, whereas man-made modifications can cause the death of a lake in decades. Vancouver Lake does, however, have the potential of becoming a valuable water resource asset for the area, due particularly to its location near the Columbia River which can be used as a source of "flushing" water to improve the quality of Vancouver Lake. (Document pdf contains 59 pages) Community interest in Vancouver Lake has waxed and waned. Prior to World War II, there were relatively few plans for discussions about the Lake and its surrounding land area. A plan to drain the Lake for farming was prohibited by the city council and county commissioners. Interest increased in 1945 when the federal government considered developing the Lake as a berthing harbor for deactivated ships at which time a preliminary proposal was prepared by the City. The only surface water connection between Vancouver Lake and the Columbia River, except during floods, is Lake River. The Lake now serves as a receiving body of water for Lake River tidal flow and surface flow from creeks and nearby land areas. Seasonally, these flows are heavily laden with sediment, septic tank drainage, fertilizers and drainage from cattle yards. Construction and gravel pit operations increase the sediment loads entering the Lake from Burnt Bridge Creek and Salmon Creek (via Lake River by tidal action). The tidal flats at the north end of Vancouver Lake are evidence of this accumulation. Since 1945, the buildup of sediment and nutrients created by man's activities has accelerated the growth of the large water plants and algae which contribute to the degeneration of the Lake. Flooding from the Columbia River, as in 1968, has added to the deposition in Vancouver Lake. The combined effect of these human and natural activities has changed Vancouver Lake into a relatively useless body of shallow water supporting some wildlife, rough fish, and shallow draft boats. It is still pleasant to view from the hills to the east. Because precipitation and streamflow are the lowest during the summer and early fall, water quantity and quality conditions are at their worst when the potential of the Lake for water-based recreation is the highest. Increased pollution of the Lake has caused a larger segment of the community to become concerned. Land use and planning studies were undertaken on the Columbia River lowlands and a wide variety of ideas were proposed for improving the quality of the water-land environment in order to enhance the usefulness of the area. In 1966, the College of Engineering Research Division at Washington State University (WSU0 in Pullman, Washington, was contacted by the Port of Vancouver to determine possible alternatives for restoring Vancouver Lake. Various proposals were prepared between 1966 and 1969. During the summer and fall of 1967, a study was made by WSU on the existing water quality in the Lake. In 1969, the current studies were funded to establish a data base for considering a broad range of alternative solutions for improving the quantity and quality of Vancouver Lake. Until these studies were undertaken, practically no data on a continuous nature were available on Vancouver Lake, Lake River, or their tributaries. (Document pdf contains 59 pages)
Resumo:
Thousands of hectares of native plants and shallow open water habitat have been displaced in Lake Okeechobee’s marsh by the invasive exotic species torpedograss ( Panicum repens L.). The rate of torpedograss expansion, it’s areal distribution and the efficacy of herbicide treatments used to control torpedograss in the lake’s marsh were quantified using aerial color infra red (IR) photography.(PDF has 6 pages.)
Resumo:
We hypothesize that the richness and diversity of the biota in Lake Moraine (42°50’47”N, 75°31’39”W) in New York have been negatively impacted by 60 years of macrophyte and algae management to control Eurasian watermilfoil ( Myriophyllum spicatum L.) and associated noxious plants. To test this hypothesis we compare water quality characteristics, richness and selected indicators of plant diversity, zooplankton, benthic macroinvertebrates and fish in Lake Moraine with those in nearby Hatch Lake (42°50’06”N, 75°40’67”W). The latter is of similar size and would be expected to have similar biota, but has not been subjected to management. Measurements of temperature, pH, oxygen, conductivity, Secchi transparency, calcium, total phosphorus and nitrites + nitrates are comparable. Taxa richness and the diversity indices applied to the aquatic macrophytes are similar in both lakes. (PDF has 8 pages.)
Resumo:
Variable watermilfoil (Myriophyllum heterophyllum Michx.) has recently become a problem in Bashan Lake, East Haddam, CT, USA. By 1998, approximately 4 ha of the 110 ha lake was covered with variable watermilfoil. In 1999, the milfoil was spot treated with Aquacide®, an 18% active ingredient of the sodium salt of 2,4-D [(2,4-dichlorophenoxy) acetic acid], applied at a rate of 114 kg/ha. Aquacide® was used because labeling regarding domestic water intakes and irrigation limitations prevented the use of Navigate® or AquaKleen®, a 19% active ingredient of the butoxyethyl ester of 2,4-D. Variable watermilfoil was partially controlled in shallow protected coves but little control occurred in deeper more exposed locations. 2,4-D levels in the treatment sites were lower than desired and offsite dilution was rapid. In 2000, the United States Environmental Protection Agency (USEPA) issued a special local need (SLN) registration to allow the use of Navigate ® or AquaKleen® in lakes with potable and irrigation water intakes. Navigate® was applied at a rate of 227 kg/ha to the same areas as treated in 1999. An additional 2 ha of variable watermilfoil was treated with Navigate® in 2001, and 0.4 ha was treated in mid-September. Dilution of the 2,4-D ester formulation to untreated areas was slower than with the salt formulation. Concentrations of 2,4-D exceeded 1000 μg/ L in several lake water samples in 2000 but not 2001. Nearly all of the treated variable watermilfoil was controlled in both years. The mid-September treatment appeared as effective as the spring and early summer treatments. Testing of homeowner wells in all 3 years found no detectable levels of 2,4-D.(PDF contains 8 pages.)
Resumo:
The nature of aquatic plant communities often defines benthic habitat within oligotrophic and mesotrophic lakes and lake management increasingly recognizes the importance of maintaining plant diversity in order to sustain biological diversity and capacity within lakes. We have developed simple statistical relationships between key physical and vegetation variables that define the habitat requirements, or “habitat-templates”, of key vegetation types to facilitate management of plant communities in New Zealand lakes. Statistical relationships were derived from two datasets. The first was a multi-lake dataset to determine the effects of water level fluctuation and water clarity. The second dataset was from a comprehensive shoreline survey of Lake Wanaka, which allowed us to examine within-lake variables such as beach slope and wave action. Sufficient statistical relationships were established to develop a habitat template for each of the major species or assemblages. The relationships suggested that the extent and diversity of shallow-growing species was related to a combination of the extent of water level fluctuation and wave exposure. (PDF contains 9 pages.)
Resumo:
Florida’s large number of shallow lakes, warm climate and long growing season have contributed to the development of excessive growths of aquatic macrophytes that have seriously interfered with many water use activities. The introduction of exotic aquatic macrophyte species such as hydrilla ( Hydrilla verticillata ) have added significantly to aquatic plant problems in Florida lakes. The use of grass carp ( Ctenopharyngodon idella ) can be an effective and economical control for aquatic vegetation such as hydrilla. Early stocking rates (24 to 74 grass carp per hectare of lake area) resulted in grass carp consumption rates that vastly exceeded the growth rates of the aquatic plants and often resulted in the total loss of all submersed vegetation. This study looked at 38 Florida lakes that had been stocked with grass carp for 3 to 10 years with stocking rates ranging from < 1 to 59 grass carp per hectare of lake and 1 to 207 grass carp per hectare of vegetation to determine the long term effects of grass carp on aquatic macrophyte communities. The median PAC (percent area coverage) value of aquatic macrophytes for the study lakes after they were stocked with grass carp was 14% and the median PVI (percent volume infested) value of aquatic macrophytes was 2%. Only lakes stocked with less than 25 to 30 fish per hectare of vegetation tended to have higher than median PAC and PVI values. When grass carp are stocked at levels of > 25 to 30 fish per hectare of vegetation the complete control of aquatic vegetation can be achieved, with the exception of a few species of plants that grass carp have extreme difficulty consuming. If the management goal for a lake is to control some of the problem aquatic plants while maintaining a small population of predominately unpalatable aquatic plants, grass carp can be stocked at approximately 25 to 30 fish per hectare of vegetation.
Resumo:
This paper is a review of studies on effects of nutrients on biological productivity and efforts made so far at restoration of nutrients in lakes. It is to provide an understanding of the basis scientific process accruing in lakes, therefore of prime importance in maintaining water quality standards for propagation of effective lake management
Resumo:
The findings are presented of an assessment made of the gillnet fishery in Kainji Lake, Nigeria from 1969 to the present, on the basis of data sets from commercial and experimental gillnet fishing, with the purpose to detect trends in some key fishery monitoring indicators. During this period, there has been an increase in the number of small meshed nets in the fishery resulting in a shift in the mode to lower mesh sizes; consequently, the average mesh size declined gradually in the fishery. This trend is found to be directly correlated with the decline in the CPUE and mean weight of the fish species. It is argued that the observed trend in CPUE and mean weight is forcing the fishermen to switch effort to gears such as traps which have very small meshes and can indescriminately take all sizes of the fish. It is shown that the catch composition by weight of Citharinus citharus, Lates niloticus and tilapias declined in the gillnet fishery in the late 70's and early 80's. Recent data, from 1994 to 1996, however indicates that C. citharus is recovering, but with declining mean weight. This suggests that the exploitation pattern is shifting to the smaller fish through the use of small meshed nets. In general, however, there has not been drastic changes in species bio-diversity in the Lake as a result of predatory effect and ecosystem overfishing as has happened in other great African Lakes. The species composition since lake formation continued to be dominated by fewer that 20 species. The potential yield for the lake has been estimated to be 32,166 tonnes (excluding clupeids) and the required optimum fishing effort to be 1,814 fishing canoes. In view of the relative stability of the species diversity in the lake and the current fish production level, it is proposed here that this MSY be adopted for all species. This would be achieved with the current effort level in the lake assuming that the efficiency of the fishermen and their gears do not improve. It should be reviewed after 10 or more years of catch and effort data collection. (PDF contains 65 pages)