3 resultados para Armed and Police forces

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intersection of social and environmental forces is complex in coastal communities. The well-being of a coastal community is caught up in the health of its environment, the stability of its economy, the provision of services to its residents, and a multitude of other factors. With this in mind, the project investigators sought to develop an approach that would enable researchers to measure these social and environmental interactions. The concept of well-being proved extremely useful for this purpose. Using the Gulf of Mexico as a regional case study, the research team developed a set of composite indicators to be used for monitoring well-being at the county-level. The indicators selected for the study were: Social Connectedness, Economic Security, Basic Needs, Health, Access to Social Services, Education, Safety, Governance, and Environmental Condition. For each of the 37 sample counties included in the study region, investigators collected and consolidated existing, secondary data representing multiple aspects of objective well-being. To conduct a longitudinal assessment of changing wellbeing and environmental conditions, data were collected for the period of 2000 to 2010. The team focused on the Gulf of Mexico because the development of a baseline of well-being would allow NOAA and other agencies to better understand progress made toward recovery in communities affected by the Deepwater Horizon oil spill. However, the broader purpose of the project was to conceptualize and develop an approach that could be adapted to monitor how coastal communities are doing in relation to a variety of ecosystem disruptions and associated interventions across all coastal regions in the U.S. and its Territories. The method and models developed provide substantial insight into the structure and significance of relationships between community well-being and environmental conditions. Further, this project has laid the groundwork for future investigation, providing a clear path forward for integrated monitoring of our nation’s coasts. The research and monitoring capability described in this document will substantially help counties, local organizations, as well state and federal agencies that are striving to improve all facets of community well-being.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, Caspian Sea is in focus of more attentions than past because of its individualistic as the biggest lake in the world and the existing of very large oil and gas resources within it. Very large scale of oil pollution caused by development of oil exploration and excavation activities not only make problem for coastal facilities but also make severe damage on environment. In the first stage of this research, the location and quality of oil resources in offshore and onshore have been determined and then affected depletion factors on oil spill such as evaporation, emulsification, dissolution, sedimentation and so on have been studied. In second stage, sea hydrodynamics model is offered and tested by determination of governing hydrodynamic equations on sea currents and on pollution transportation in sea surface and by finding out main parameters in these equations such as Coriolis, bottom friction, wind and etc. this model has been calculated by using cell vertex finite volume method in an unstructured mesh domain. According to checked model; sea currents of Caspian Sea in different seasons of the year have been determined and in final stage different scenarios of oil spill movement in Caspian sea on various conditions have been investigated by modeling of three dimensional oil spill movement on surface (affected by sea currents) and on depth (affected by buoyancy, drag and gravity forces) by applying main above mentioned depletion factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, producing ability of electricity by horizontal tidal current turbines and installing possibility of these turbines on bridge's piers in the marine environments has been studied to reduce primary implementation costs and make the plan, economical. To do this and to study its feasibility, the exerted forces from installing horizontal tidal current turbines were compared with the forces applied to the bridge structure during designing process (given in the Standards). Then, the allowable ranges of the overloading which is tolerable by the piers of the bridge were obtained. Accordingly, it is resulted that for installing these turbines, the piers of the existing bridges are required to be strengthened. Because of increasing usage of renewable powers and as a suggestion, the exerted forces from installing turbine for loading coefficients of different Standards are given. Finally as an example, preliminary designing of a horizontal tidal current turbine was carried out for Gesham Channel and the forces exerted from turbine to the bridge's pier were calculated for the future usage in order to create a test site of real dimensions.