161 resultados para Food preservatives.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study was aimed at determining the food habits of hatchery-produced, pond-cultured shad (Alosa sapidissima) reared to a total length of approximately two inches. More specifically, the objectives were to determine: (1) That point in life at which young shad start to consume food; (2) What type or types of food the young shad consume at the onset of feeding; (3) Food changes, if any, which occur with age and growth in size up to the arbitrarily designated total length of two inches. The plan was that the shad larvae be introduced into an outdoor rearing pond previously fertilized, and that the larvae be dependent upon the plankton for food as they would be under natural conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report is a literature review on Food and Nutrition Security in Timor-Leste based on data from surveys conducted by the Timor-Leste National Statistics Directorate, as well as from national and international organizations working in Timor-Leste. This review was supported by the Australian Centre for International Agricultural Research (ACIAR)-funded project “Strategy for Investment in Fisheries in East Timor”. This report describes the current food and nutrition situation in Timor-Leste for the purpose of planning and implementing interventions aimed at improving food and nutrition security, especially within aquatic agricultural systems. The potential role of aquaculture in improving food and nutrition security is considered, with reference to the recently endorsed Timor-Leste National Aquaculture Development Strategy (2012-2030) developed by the National Directorate of Fisheries and Agriculture, Ministry of Agriculture and Fisheries.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the food habits of the Sowerby’s beaked whale (Mesoplodon bidens) from observations of 10 individuals taken as bycatch in the pelagic drift gillnet fishery for Swordfish (Xiphias gladius) in the western North Atlantic and 1 stranded individual from Kennebunk, Maine. The stomachs of 8 bycaught whales were intact and contained prey. The diet of these 8 whales was dominated by meso- and benthopelagic fishes that composed 98.5% of the prey items found in their stomachs and cephalopods that accounted for only 1.5% of the number of prey. Otoliths and jaws representing at least 31 fish taxa from 15 families were present in the stomach contents. Fishes, primarily from the families Moridae (37.9% of prey), Myctophidae (22.9%), Macrouridae (11.2%), and Phycidae (7.2%), were present in all 8 stomachs. Most prey were from 5 fish taxa: Shortbeard Codling (Laemonema barbatulum) accounted for 35.3% of otoliths, Cocco’s Lanternfish (Lobianchia gemellarii) contributed 12.9%, Marlin-spike (Nezumia bairdii) composed 10.8%, lanternfishes (Lampanyctus spp.) accounted for 8.4%; and Longfin Hake (Phycis chesteri) contributed 6.7%. The mean number of otoliths per stomach was 1196 (range: 327–3452). Most of the fish prey found in the stomachs was quite small, ranging in length from 4.0 to 27.7 cm. We conclude that the Sowerby’s beaked whales that we examined in this study fed on large numbers of relatively small meso- and benthopelagic fishes that are abundant along the slope and shelf break of the western North Atlantic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subsistence food items can be a health concern in rural Alaska because community members often rely on fish and wildlife resources not routinely monitored for persistent bioaccumulative contaminants and pathogens. Subsistence activities are a large part of the traditional culture, as well as a means of providing protein in the diets for Tribal members. In response to the growing concerns among Native communities, contaminant body burden and histopathological condition of chum and sockeye salmon (Oncorhynchus keta and Oncorhynchus nerka) and the shellfish cockles and softshell clams (Clinocardium nuttallii and Mya arenaria) were assessed. In the Spring of 2010, the fish and shellfish were collected from traditional subsistence harvest areas in the vicinity of Nanwalek, Port Graham, and Seldovia, AK, and were analyzed for trace metals and residues of organic contaminants routinely monitored by the NOAA National Status & Trends Program (NS&T). Additionally, the fish and shellfish were histologically characterized for the presence, prevalence and severity of tissue pathology, disease, and parasite infection. The fish and shellfish sampled showed low tissue contamination, and pathologic effects of the parasites and diseases were absent or minimal. Taken together, the results showed that the fish and shellfish were healthy and pose no safety concern for consumption. This study provides reliable chemistry and histopathology information for local resource managers and Alaska Native people regarding subsistence fish and shellfish use and management needs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mucus surface layer of corals plays a number of integral roles in their overall health and fitness. This mucopolysaccharide coating serves as vehicle to capture food, a protective barrier against physical invasions and trauma, and serves as a medium to host a community of microorganisms distinct from the surrounding seawater. In healthy corals the associated microbial communities are known to provide antibiotics that contribute to the coral’s innate immunity and function metabolic activities such as biogeochemical cycling. Culture-dependent (Ducklow and Mitchell, 1979; Ritchie, 2006) and culture-independent methods (Rohwer, et al., 2001; Rohwer et al., 2002; Sekar et al., 2006; Hansson et al., 2009; Kellogg et al., 2009) have shown that coral mucus-associated microbial communities can change with changes in the environment and health condition of the coral. These changes may suggest that changes in the microbial associates not only reflect health status but also may assist corals in acclimating to changing environmental conditions. With the increasing availability of molecular biology tools, culture-independent methods are being used more frequently for evaluating the health of the animal host. Although culture-independent methods are able to provide more in-depth insights into the constituents of the coral surface mucus layer’s microbial community, their reliability and reproducibility rely on the initial sample collection maintaining sample integrity. In general, a sample of mucus is collected from a coral colony, either by sterile syringe or swab method (Woodley, et al., 2008), and immediately placed in a cryovial. In the case of a syringe sample, the mucus is decanted into the cryovial and the sealed tube is immediately flash-frozen in a liquid nitrogen vapor shipper (a.k.a., dry shipper). Swabs with mucus are placed in a cryovial, and the end of the swab is broken off before sealing and placing the vial in the dry shipper. The samples are then sent to a laboratory for analysis. After the initial collection and preservation of the sample, the duration of the sample voyage to a recipient laboratory is often another critical part of the sampling process, as unanticipated delays may exceed the length of time a dry shipper can remain cold, or mishandling of the shipper can cause it to exhaust prematurely. In remote areas, service by international shipping companies may be non-existent, which requires the use of an alternative preservation medium. Other methods for preserving environmental samples for microbial DNA analysis include drying on various matrices (DNA cards, swabs), or placing samples in liquid preservatives (e.g., chloroform/phenol/isoamyl alcohol, TRIzol reagent, ethanol). These methodologies eliminate the need for cold storage, however, they add expense and permitting requirements for hazardous liquid components, and the retrieval of intact microbial DNA often can be inconsistent (Dawson, et al., 1998; Rissanen et al., 2010). A method to preserve coral mucus samples without cold storage or use of hazardous solvents, while maintaining microbial DNA integrity, would be an invaluable tool for coral biologists, especially those in remote areas. Saline-saturated dimethylsulfoxide-ethylenediaminetetraacetic acid (20% DMSO-0.25M EDTA, pH 8.0), or SSDE, is a solution that has been reported to be a means of storing tissue of marine invertebrates at ambient temperatures without significant loss of nucleic acid integrity (Dawson et al., 1998, Concepcion et al., 2007). While this methodology would be a facile and inexpensive way to transport coral tissue samples, it is unclear whether the coral microbiota DNA would be adversely affected by this storage medium either by degradation of the DNA, or a bias in the DNA recovered during the extraction process created by variations in extraction efficiencies among the various community members. Tests to determine the efficacy of SSDE as an ambient temperature storage medium for coral mucus samples are presented here.