121 resultados para Excess weight
Resumo:
The seasonally oscillating growth parameters and length-weight relationships for Scomber japonicus caught in the Gulf of Guayaquil, Ecuador, were determined based on length-frequency data from 1989 to 1996, using the FiSAT software package of Gayanilo et al. (1996). Estimates of growth parameters are in general agreement with previous studies on the same species. Results also imply that the growth of Scomber japonicus slows down during the cold season by approximately 50% with respect to the average growth. The mean value of the power b is significantly larger than 3, indicating that the model of allometric growth should be used for the length-weight relationship and calculation of the condition factor.
Resumo:
Size distribution within re- ported landings is an important aspect of northern Gulf of Mexico penaeid shrimp stock assessments. It reflects shrimp population characteristics such as numerical abundance of various sizes, age structure, and vital rates (e.g. recruitment, growth, and mortality), as well as effects of fishing, fishing power, fishing practices, sampling, size-grading, etc. The usual measure of shrimp size in archived landings data is count (C) the number of shrimp tails (abdomen or edible portion) per pound (0.4536 kg). Shrimp are marketed and landings reported in pounds within tail count categories. Statistically, these count categories are count class intervals or bins with upper and lower limits expressed in C. Count categories vary in width, overlap, and frequency of occurrence within the landings. The upper and lower limits of most count class intervals can be transformed to lower and upper limits (respectively) of class intervals expressed in pounds per shrimp tail, w, the reciprocal of C (i.e. w = 1/C). Age based stock assessments have relied on various algorithms to estimate numbers of shrimp from pounds landed within count categories. These algorithms required un- derlying explicit or implicit assumptions about the distribution of C or w. However, no attempts were made to assess the actual distribution of C or w. Therefore, validity of the algorithms and assumptions could not be determined. When different algorithms were applied to landings within the same size categories, they produced different estimates of numbers of shrimp. This paper demonstrates a method of simulating the distribution of w in reported biological year landings of shrimp. We used, as examples, landings of brown shrimp, Farfantepenaeus aztecus, from the northern Gulf of Mexico fishery in biological years 1986–2006. Brown shrimp biological year, Ti, is defined as beginning on 1 May of the same calendar year as Ti and ending on 30 April of the next calendar year, where subscript i is the place marker for biological year. Biological year landings encompass most if not all of the brown shrimp life cycle and life span. Simulated distributions of w reflect all factors influencing sizes of brown shrimp in the landings within a given biological year. Our method does not require a priori assumptions about the parent distributions of w or C, and it takes into account the variability in width, overlap, and frequency of occurrence of count categories within the landings. Simulated biological year distributions of w can be transformed to equivalent distributions of C. Our method may be useful in future testing of previously applied algorithms and development of new estimators based on statistical estimation theory and the underlying distribution of w or C. We also examine some applications of biological year distributions of w, and additional variables derived from them.
Resumo:
Weight-on-length (W-L) relationships for 2,482 dolphinfish, Coryphaena hippurus, and 1,161 wahoo, Acanthocybium solandri, were examined. Data on fork length, whole (round) weight, and sex were collected for dolphinfish at the Honolulu fish auction from March 1988 through November 1989. Unsexed weight and length data for wahoo were collected at the auction from July 1988 through November 1989. We also used sex specific weight and length data of 171 wahoo collected during 1977–1985 research cruises for analysis. Coefficients of W-L regressions were significantly different between the sexes for dolphinfish. Coefficients did not significantly differ between the sexes for wahoo based on research cruise data. In a general linear model evaluating month as a categorical factor, month was significant for female dolphinfish, male dolphinfish, and wahoo with sexes pooled. W-L and length-on-weight (L-W) relationships were fitted by nonlinear regression for all dolphinfish, female dolphinfish, male dolphinfish, and all wahoo sexes pooled. W-L relationships for monthly samples of female dolphinfish, male dolphinfish, and all wahoo with sexes pooled were also fitted by nonlinear regression. Predicted mean weight at length for wahoo was highest at the beginning of the spawning season in June and lowest after the spawning season in September. Maximum and minimum predicted mean weight at length for both sexes of dolphinfish did not correspond with the peak spawning period (March–May). Plausible migration models in conjunction with reproductive behavior were examined to explain the variability in monthly predicted mean weight at length for dolphinfish.
Resumo:
In March-April 2004, the National Oceanic and Atmospheric Administration (NOAA), U.S. Environmental Protection Agency (EPA), and State of Florida (FL) conducted a study to assess the status of ecological condition and stressor impacts throughout the South Atlantic Bight (SAB) portion of the U.S. continental shelf and to provide this information as a baseline for evaluating future changes due to natural or human-induced disturbances. The boundaries of the study region extended from Cape Hatteras, North Carolina to West Palm Beach, Florida and from navigable depths along the shoreline seaward to the shelf break (~100m). The study incorporated standard methods and indicators applied in previous national coastal monitoring programs — Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA) — including multiple measures of water quality, sediment quality, and biological condition. Synoptic sampling of the various indicators provided an integrative weight-of-evidence approach to assessing condition at each station and a basis for examining potential associations between presence of stressors and biological responses. A probabilistic sampling design, which included 50 stations distributed randomly throughout the region, was used to provide a basis for estimating the spatial extent of condition relative to the various measured indicators and corresponding assessment endpoints (where available). Conditions of these offshore waters are compared to those of southeastern estuaries, based on data from similar EMAP/NCA surveys conducted in 2000-2004 by EPA, NOAA, and partnering southeastern states (Florida, Georgia, South Carolina, North Carolina, Virginia) (NCA database for estuaries, EPA Gulf Ecology Division, Gulf Breeze FL). Data from a total of 747 estuarine stations are included in this database. As for the offshore sites, the estuarine samples were collected using standard methods and indicators applied in previous coastal EMAP/NCA surveys including the probabilistic sampling design and multiple indicators of water quality, sediment quality, and biological condition (benthos and fish). The majority of the SAB had high levels of DO in near-bottom water (> 5 mg L-1) indicative of "good" water quality. DO levels in bottom waters exceeded this upper threshold at all sites throughout the coastal-ocean survey area and in 76% of estuarine waters. Twenty-one percent of estuarine bottom waters had moderate levels of DO between 2 and 5 mg L-1 and 3% had DO levels below 2 mg L-1. The majority of sites with DO in the low range considered to be hypoxic (< 2 mg L-1) occurred in North Carolina estuaries. There also was a notable concentration of stations with moderate DO levels (2 – 5 mg L-1) in Georgia and South Carolina estuaries. Approximately 58% of the estuarine area had moderate levels of chlorophyll a (5-10 μg L-1) and about 8% of the area had higher levels, in excess of 10 μg L-1, indicative of eutrophication. The elevated chlorophyll a levels appeared to be widespread throughout the estuaries of the region. In contrast, offshore waters throughout the region had relatively low levels of chlorophyll a with 100% of the offshore survey area having values < 5 μg L-1.
Resumo:
A study was initiated with field work in May 2007 to assess the status of ecological condition and stressor impacts throughout the U.S. continental shelf off South Florida, focusing on soft-bottom habitats, and to provide this information as a baseline for evaluating future changes due to natural or human-induced disturbances. The boundaries of the study region extended from Anclote Key on the western coast of Florida to West Palm Beach on the eastern coast of Florida, inclusive of the Florida Keys National Marine Sanctuary (FKNMS), and from navigable depths along the shoreline seaward to the shelf break (~100m). The study incorporated standard methods and indicators applied in previous national coastal monitoring programs — U.S. Environmental Protection Agency’s (EPA) Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA) — including multiple measures of water quality, sediment quality, and biological condition. Synoptic sampling of the various indicators provided an integrative weight-of-evidence approach to assessing condition at each station and a basis for examining potential associations between presence of stressors and biological responses. A probabilistic sampling design, which included 50 stations distributed randomly throughout the region, was used to provide a basis for estimating the spatial extent of condition relative to the various measured indicators and corresponding assessment endpoints (where available). The study was conducted through a large cooperative effort by National Oceanic and Atmospheric Administration (NOAA)/National Centers for Coastal Ocean Science (NCCOS), EPA, U.S. Geological Survey (USGS), NOAA/Oceanic and Atmospheric Research (OAR)/Atlantic Oceanographic and Meteorological Laboratory in Miami, FKNMS, and the Florida Fish and Wildlife Conservation Commission (FWC). The majority of the South Florida shelf had high levels of dissolved oxygen (DO) in near-bottom water (> 5 mg L-1) indicative of “good” water quality.. DO levels in bottom waters exceeded this upper threshold at 98.8% throughout the coastal-ocean survey area. Only 1.2% of the region had moderate DO levels (2-5 mg/L) and no part of the survey area had DO <2.0 mg/L. In addition, offshore waters throughout the region had relatively low levels of total suspended solids (TSS), nutrients, and chlorophyll a indicative of oligotrophic conditions. Results suggested good sediment quality as well. Sediments throughout the region, which ranged from sands to intermediate muddy sands, had low levels of total organic carbon (TOC) below bioeffect guidelines for benthic organisms. Chemical contaminants in sediments were also mostly at low, background levels. For example, none of the stations had chemicals in excess of corresponding Effects-Range Median (ERM) probable bioeffect values or more than one chemical in excess of lower-threshold Effects-Range Low (ERL) values. Cadmium was the only chemical that occurred at moderate concentrations between corresponding ERL and ERM values. Sixty fish samples from 28 stations were collected and analyzed for chemical contaminants. Eleven of these samples (39% of sites) had moderate levels of contaminants, between lower and upper non-cancer human-health thresholds, and ten (36% of sites) had high levels of contaminants above the upper threshold.
Resumo:
Preliminary details are given of studies conducted regarding the length-weight relationship of Sardinella sirm from the Andaman Sea, a species of economic importance in the area. Results show that this species grows in proportion to length, weight and girth; the group of fish studied was composed of the same population and did not reveal any subspecies of sub-variety.
Resumo:
The length-weight relationship of Upeneus sulphureus was studied on the basis of 125 females and 103 males, collected during the 27th cruise of research vessel M.V. Saraswati in the month of September, 1984. The correlation coefficient was found significant at 5% and 1% level respectively for male and female. In both the sexes, the regression co-efficient was found higher than three. Analysis of covariance was also carried out for the F test and F distribution.
Resumo:
Upeneus moluccensis were collected from the catches of bottom fish trawl of "M. V. Saraswati" off Veraval coast in the area lat. 20 degree 26 N and long. 70 degree 35 E. The fish were analysed for length-weight relationship and morphometric characters. The fishes were found to vary from 116 to 161 mm in length and 20.0 to 50.0 g in weight. The exponent value and correlation coefficient for length-weight relationship was found to be 2.73 and 0.991 respectively.
Resumo:
Fluctuations in the K values of Nemipterus japonicus (Bloch) off Bombay coast were interpreted regarding sex, month and females maturity stage. These indicate differential growth rates in males and females. Males and females attain first maturity at 145 mm and 115 mm respectively, second maturity is attained by both the sexes at 195 mm. First spawning occurs when both are of 155 mm length and at second spawning males and females attain 215 and 205 mm of length respectively. The fish mature and breed at "O" year; the main spawning period is from August to November with peak spawning activities in October. It grows about 155 mm in first year at 12.91mm per month and about 215 mm in the second year at 5.0 mm per month on an average. Length-weight relationships for males and females are given. The rate of growth of females by weight was found to be slower below 150 mm, but faster than that of males above 150 mm specimens.