122 resultados para Quantity cookery.
Resumo:
This paper briefly outlines the implications of making a decision on the most appropriate alternative for carrying out stock assessments and the reasons for previous failures to conserve finfish stocks for sustainable use. The Mathews (1987) approach utilizing Age-Length Catch-Effort Keys (ALCEK) is briefly reviewed, and a suggested overall approach for the assessment of the finfish resources of the Caribbean community is outlined. With recent initiatives towards use of the precautionary approach and reference points, Carribean community countries are advised to revisit the question of the models to be utilized for the assessment of their fish stocks, paying due attention to the quantity, quality and applicability of data now being collected.
Resumo:
Bush park fishing / padal fishing is an indigenous fishing method widely employed in the Ashtamudi estuary of Kerala (south India). An artificial reef made from twigs and leaves of trees is planted in the shallow areas of the estuary. The aim is to harvest fish that find shelter in these structures for the purpose of feeding and breeding. Though the State Department of Fisheries has banned this method of fishing in the inland waters of Kerala, 400 padals are operating in this estuary. About 300 of them are anchored in the western parts of the estuary (west Kayal). Fish are harvested in the padals at monthly intervals almost round the year and this results in the destruction of a sizeable quantity of juveniles and sub-adults of the commercially important fishes, such as Pearl spot and mullets, from the estuary. These padals pose a major threat to the sustainability of the fishery resources of this estuary and, therefore, need to be phased out by providing alternative occupations for the fishermen who are dependant on the padals.
Resumo:
Bycatch from trawlers forms a signifi cant quantity of the total marine fi sh landings along the northwest coast of India, particularly in the state of Gujarat, which contributes about 23 percent of the total marine fi sh landings in the country. This paper discusses the composition of this bycatch, its signifi cance in terms of nutritional value, its present utilization pattern and the scope for improvement.
Resumo:
Sources of wastes in fishing operations mainly include bycatch discards; processing wastes where catch is processed onboard; plastic wastes due to abandoned, lost and discarded fishing gear; bilges and other wastes from the vessel operations. Fishing systems in general have an associated catch of nontargeted organisms known as bycatch. Non-selective fishing gear that is not modified or equipped to exclude non-targeted organisms, may take a significant quantity of bycatch of non-targeted finfish, juvenile fish, benthic animals, marine mammals, marine birds and vulnerable or endangered species that are often discarded. Average annual global discards, has been estimated to be 7.3 million t, based on a weighted discard rate of 8%, during 1992-2001 period. Trawl fisheries for shrimp and demersal finfish account for over 50% of the total estimated global discards. Plastic materials are extensively used in fisheries, owing to their durability and other desirable properties, contributing to the efficiency and catchability of the fishing gear. However, plastics biodegrade at an extremely slow rate compared to other organic materials. Abandoned, lost or otherwise discarded fishing gear (ALDFG) and related marine debris have been recognized as a critical problem in the marine environment and for living marine resources. Prevention of excess fishing capacity by appropriate management measures could lead to enormous savings in terms of fuel consumption, emissions and bycatch discards from the excess fishing fleet, capital and operational investments and labour deployment in capture fisheries, with significant economic gains. In this paper, wastes originating from fishing operations are reviewed, along with their environmental impacts and possible mitigation measures
Resumo:
The black clam, Villorita cyprinoides, is the most important clam species landed in India. The State of Kerala has been, by far, the leading producer of the species. Nearly all the landings, about 25,000 tons (t)/year are harvested in Vembanad Lake, the largest estuary, 96 km (54 mi) long, on the west coast of India. Nearly 4,000 fishermen harvest the black clams year-round. They harvest most by hand while diving in waters from 2.1–2.7 m (7–9 ft) deep. Each collects 150–200 kg (3–5 bushels)/day. Upon returning from the harvesting beds, the fishermen and their families cook the clams and separate their meats from their shells using simple sieves. Fishermen’s wives sell the meats within their local villages and save some for their families to eat. The shells are sold through organized fishermen societies to various industries. A substantial quantity of sub-fossil black clam shells lies buried from 22–50 cm (9–20 in) beneath the lake sediments. They are dredged in a controlled manner and sold to the same industries. The stocks of black clams seem to be declining slowly in the southern part of the lake because the water has been getting fresher, but they are not declining in the northern half. A likely threat to the landings may be a lack of fishermen in the future.
Resumo:
Shore whaling along North America’s California and Baja California coasts during 1854–99 was ancillary to the offshore and alongshore American whale fishery, which had begun in the North Pacific in the early 1800’s and was flourishing by the 1840’s. From its inception at Monterey, Calif., in the mid 1850’s, the shore fishery, involving open boats deployed from land to catch and tow whales for processing, eventually spread from Monterey south to San Diego and Baja California and north to Crescent City near the California–Oregon border. It had declined to a relict industry by the 1880’s, although sporadic efforts continued into the early 20th century. The main target species were gray whales, Eschrichtius robustus, and humpback whales, Megaptera novaeangliae, with the valuable North Pacific right whale, Eubalaena japonica, also pursued opportunistically. Catch data are grossly incomplete for most stations; no logbooks were kept for these operations as they were for high-seas whaling voyages. Even when good information is available on catch levels, usually as number of whales landed or quantity of oil produced, it is rarely broken down by species. Therefore, we devised methods for extrapolation, interpolation, pro rationing, correction, and informed judgment to produce time series of catches. The resulting estimates of landings from 1854 to 1899 are 3,150 (SE = 112) gray whales and 1,637 (SE = 62) humpback whales. The numbers landed should be multiplied by 1.2 to account for hunting loss (i.e. whales harpooned or shot but not recovered and processed).
Resumo:
In the 1500’s, the waters of Venezuela and to a lesser extent Colombia produced more natural pearls than any place ever produced in the world in any succeeding century. Atlantic pearl-oysters, Pinctata imbricata Röding 1798, were harvested almost entirely by divers. The pearls from them were exported to Spain and other European countries. By the end of the 1500’s, the pearl oysters had become much scarcer, and little harvesting took place during the 1600’s and 1700’s. Harvesting began to accelerate slowly in the mid 1800’s and has since continued but at a much lower rate than in the 1500’s. The harvesting methods have been hand collecting by divers until the early 1960’s, dredging from the 1500’s to the present, and hardhat diving from 1912 to the early 1960’s. Since the mid 1900’s, Japan and other countries of the western Pacific rim have inundated world markets with cultured pearls that are of better quality and are cheaper than natural pearls, and the marketing of natural pearls has nearly ended. The pearl oyster fishery in Colombia ended in the 1940’s, but it has continued in Venezuela with the fishermen selling the meats to support themselves; previously most meats had been discarded. A small quantity of pearls is now taken, and the fishery, which comprised about 3,000 fishermen in 1947, comprised about 300 in 2002.
Resumo:
The National Marine Fisheries Service’s Alaska Fisheries Science Center (AFSC) has a long and successful history of conducting research in cooperation with the fishing industry. Many of the AFSC’s annual resource assessment surveys are carried out aboard chartered commercial vessels and the skill and experience of captains and crew are integral to the success of this work. Fishing companies have been contracted to provide vessels and expertise for many different types of research, including testing and evaluation of survey and commercial fishing gear and development of improved methods for estimating commercial catch quantity and composition. AFSC scientists have also participated in a number of industry-initiated research projects including development of selective fishing gears for bycatch reduction and evaluating and improving observer catch composition sampling. In this paper, we describe the legal and regulatory provisions for these types of cooperative work and present examples to illustrate the process and identify the requirements for successful cooperative research.
Resumo:
Bycatch, or the unintended capture of fish, marine mammals, sea turtles, and seabirds by fishing gear, occurs to some degree in most fisheries. The recently released National Marine Fisheries Service’s (NMFS) U.S. National Bycatch Report provides information on bycatch in U.S. commercial fisheries by fishery and species. The report also provides national statistics in the form of national bycatch ratio and a national bycatch estimate. We describe the methods used to develop these statistics and compare them to similar studies. We conclude that the national bycatch ratio and national bycatch estimates developed by NMFS represent the best available information on bycatch in U.S. fisheries. However, given changes in bycatch management over time, as well as inter-annual variability in bycatch levels and a high percentage of fisheries for which data on bycatch are not currently available, we recommend that NMFS continue to support bycatch data collection and reporting efforts to improve the quality and quantity of bycatch data and estimates available to fisheries managers and scientists over time. This will enable NMFS to meet its requirements for bycatch reporting under the Magnuson-Stevens Act (MSA), as well as requirements for bycatch minimization under the MSA, Marine Mammal Protection Act, and Endangered Species Act.
Resumo:
A significant fraction of the total nitrogen entering coastal and estuarine ecosystems along the eastern U.S. coast arises from atmospheric deposition; however, the exact role of atmospherically derived nitrogen in the decline of the health of coastal, estuarine, and inland waters is still uncertain. From the perspective of coastal ecosystem eutrophication, nitrogen compounds from the air, along with nitrogen from sewage, industrial effluent, and fertilizers, become a source of nutrients to the receiving ecosystem. Eutrophication, however, is only one of the detrimental impacts of the emission of nitrogen containing compounds to the atmosphere. Other adverse effects include the production of tropospheric ozone, acid deposition, and decreased visibility (photochemical smog). Assessments of the coastal eutrophication problem indicate that the atmospheric deposition loading is most important in the region extending from Albemarle/Parnlico Sounds to the Gulf of Maine; however, these assessments are based on model outputs supported by a meager amount of actual data. The data shortage is severe. The National Research Council specifically mentions the atmospheric role in its recent publication for the Committee on Environmental and Natural Resources, Priorities for Coastal Ecosystem Science (1994). It states that, "Problems associated with changes in the quantity and quality of inputs to coastal environments from runoff and atmospheric deposition are particularly important [to coastal ecosystem integrity]. These include nutrient loading from agriculture and fossil fuel combustion, habitat losses from eutrophication, widespread contamination by toxic materials, changes in riverborne sediment, and alteration of coastal hydrodynamics. "
Resumo:
The summer flounder, Paralichthys dentatus, is overexploited and is currently at very low levels of abundance. This is reflected in the compressed age structure of the population and the low catches in both commercial and recreational fisheries. Declining habitat quantity and quality may be contributing to these declines, however we lack a thorough understanding of the role of habitats in the population dynamics of this species. Stock structure is unresolved and current interpretations, depending on the technique and study area, suggest that there may be two or three spawning populations. If so, these stocks may have differing habitat requirements. In response to this lack of knowledge, this document summarizes and synthesizes the available information on summer flounder habitat in all life history stages (eggs, larvae, juveniles and adults) and identifies areas where further research is needed. Several levels of investigation were conducted in order to produce this document. First, an extensive search for summer flounder habitat information was made, which included both the primary and gray literature as well as unanalyzed data. Second, state and federal fisheries biologists and resource managers in all states within the primary range of summer flounder (Massachusetts to Florida) were interviewed along with a number of fish ecologists and summer flounder experts from the academic and private sectors. Finally, information from all sources was analyzed and synthesized to form a coherent overview. This document first presents an overview of the economic importance and current status of summer flounder (Chapter 1). It then summarizes our present state of knowledge of summer flounder distribution, life history patterns and stock identification (Chapter 2). This is followed by a synopsis of habitat requirements during each life history stage. For convenience, this is presented by general habitat as offshore eggs (Chapter 3), offshore larvae (Chapter 4), estuarine larvae (Chapter 5), estuarine juveniles (Chapter 6), offshore juveniles (Chapter 7) and estuarine and offshore adults (Chapter 8). In several instances, previously undigested data sets are analyzed to provide more detailed information, especially for estuarine juveniles. The information is then discussed in terms of its relevance to resource managers (Chapter 9).
Resumo:
Gray’s Reef National Marine Sanctuary (GRNMS) is located 32.4 km offshore of Sapelo Island, Georgia. The ecological importance of this area is related to the transition between tropical and temperate waters, and the existence of a topographically complex system of ledges. Due to its central location, GRNMS can be used as a focal site to study the accumulation and impacts of marine debris on the Atlantic continental shelf offshore of the Southeast United States. Previously, researchers characterized marine debris in GRNMS and reported that incidence of the debris at the limited densely colonized ledge sites was significantly greater than at sand or sparsely colonized live bottom, and is further influenced by the level of boating activity and physiographic characteristics (e.g., ledge height). Information gleaned from the initial marine debris characterization was used to devise a strategy for prioritizing cleanup and monitoring efforts. However, a significant gap in knowledge was the rate of debris accumulation. The primary objective of this study was to select, mark, and perform initial marine debris surveys at permanent monitoring sites within GRNMS to quantify long-term trends in types, abundance, impacts, and accumulation rates of debris. Ledge sites were selected to compare types, abundance, and accumulation rates of marine debris between a) areas of high and low use and b) short and tall ledges. Nine permanent monitoring sites were marked and initially surveyed in 2007/2008. Surveys were conducted within a 50 x 4 m transect for a total survey area of 200 square meters. All debris was removed and detailed information was taken on the types of debris, quantity, and associations with benthic fauna. Information on associations with benthic fauna included degree of entanglement, type of organism with which it is entangled or resting on, degree of fouling, and visible impacts such as tissue abrasions. Sites were re-surveyed approximately one year later to quantify new accumulation. During the initial survey, a total of ten debris items, totaling 16.3 kg in weight, were removed from two monitoring stations, both “tall” sites within the area of high boat use. Year-one accumulation totaled five items and approximately 7 kg in weight. Similar to the initial survey, all debris was found at sites in the area of high boat use. However, in contrast to the initial survey, two of these items were found on medium-height ledges. Removed items included fishing line, leaders, rope, plastic, and fabric. Although items were often encrusted in benthic biota or entangled on the ledge, impacts such as abrasions or other injuries were not observed. During the 2009 monitoring efforts, volunteer divers were trained to conduct the survey. Monitoring protocols were documented for GRNMS staff and included as an appendix of this report to enable long-term monitoring of sites. Additionally, national reconnaissance data (e.g. satellite, radar, aerial surveys) and other information on known fishing locations were examined for patterns of resource use and correlations with debris occurrence patterns. A previous model predicting the density of marine debris based on ledge features and boat use was refined and the results were used to generate a map of predicted debris density for all ledges.
Resumo:
The Hedgehog signaling pathway is essential for embryogenesis and for tissue homeostasis in the adult. However, it may induce malignancies in a number of tissues when constitutively activated, and it may also have a role in other forms of normal and maladaptive growth. Cyclopamine, a naturally occurring steroidal alkaloid, specifically inhibits the Hedgehog pathway by binding directly to Smoothened, an important Hedgehog response element. To use cyclopamine as a tool to explore and/or inhibit the Hedgehog pathway in vivo, a substantial quantity is required, and as a practical matter cyclopamine has been effectively unavailable for usage in animals larger than mice.
Resumo:
For more than 25 years all sea turtle products have been prohibited from international commerce by the 170-member nations of the Convention on International Trade in Endangered Species (CITES). Sea turtles continue to be threatened by direct take (including poaching) and illegal trade despite multi-national protection efforts. Although take may contribute significantly to sea turtle decline, illegal take is difficult to measure since there are few quantified records associated with legal fisheries and fewer still for illegal take (poaching). We can, however, quantify one portion of the illegal sea turtle trade by determining how many illegal products were seized at United States ports of entry over a recent 10-year period. The United States Fish and Wildlife Service (USFWS) oversees the import and export of wildlife and wildlife products, ensuring that wildlife trade complies with United States laws and international treaties. Additionally, the USFWS has legal authority to target suspected illegal wildlife activity through undercover and field investigations. In an effort to assess the scale of illegal sea turtle take and trade, we have conducted a 10-year (1994 – 2003) review of the law enforcement database maintained by the USFWS. This database tracks the number and type of wildlife cases, the quantity of seized products, and the penalties assessed against violators. These data are minimum estimates of the sea turtle products passing through the United States borders, as smuggled wildlife is oftentimes not detected.
Resumo:
The study describes the main causes of captures and productions decreasing of swimming crab Callinectes amnicola (Decapoda Portunidae) in Aby lagoon complex. For that, docks of two Sub Prefectures of Adiaké and Assini-Mafia respectively including the villages of Adiaké, Anga, Assomlan, Epleman, Aby and Man-Man, M'Bratty, Assini-Ngouankro and Assini-Mafia were studied from 2006 to 2009 and completed with previous results obtained from 1988 to 2005. Field investigators were identified by site/village and they recorded daily activities of fishermen (number of effective fishermen, number of gears and area of fishing, duration of fishing, types and quantity of bait) and landing of swimming crabs. During recent period of the study, total production decreased from 3742 tons in 2006 to 1500 tons in 2009. Matrix correlations and correlation analysis indicated that this downward trend was due to the increase of the number of fishermen, number of fishing gear, the decrease in female crabs capture and degradation of the environment related to gradual closure of the Assini-Mafia channel. Despite this decline, total production in Aby lagoon remained high compared to the productions of some lagoons of the country and the region. Given the importance of fishing swimming crabs in Aby lagoon, since it concerns many young people and it is a source of income, stringent measures for sustainable and responsible management must be taken and implemented as part of a co-management plan involving all stakeholders to sustainably manage the resource