508 resultados para Lake bottom springs
Resumo:
Management options for the Silver Springs free-ranging rhesus macaque population range from removal to active maintenance of the population in situ. Selection of a management option is dependent upon which issues are perceived to be true problems. Management options are presented along with their effectiveness in dealing with issues previously described.(31 page document)
Resumo:
The food and feeding habits of Polyprerus cncllicheri and Polypterus senegalus was carried out in the months of September to October. The food of 33 Polypierus endlicheri as observed include Tilapia species (89.3%), Eutropius niloticus (28.6%), Mayfly nymph (39.3%), Dragon fly larva (56.6%) fish remains (21.4%) and detritus (7.1%). The food of27 Polypterus senegalus as observed include Tilapia sp (88.4%), Eutropius niloticus (27.9%), may fly nymph (23.3%), Dragonfly nymph (34.9%) remains (21.1%) detritus (23.3%). (9 page document) The percentage occurrence of food item found in the stomach of Polypterus endlieheri is 93.3% while that of Polyprerus senegalus is 67.4%. The dominance of Tilapia sp was establish in the study, and there is no significant difference between the feeding habit of Polypterus endlicheri and Polyprerus senegalus.
Resumo:
The mortality of the four major cichlid fishes of Urnuoseriche Lake is the subject of this paper. Mortality I as estimated by five techniques, vary amongst the cichlid fishes, viz, Tilapia carbrae, Tilapia mariac, Tilapia zilli cend (hrornoditilapfa guntheri. The highest mortality rate was recorded for T mariac where the total mortality (Z) was 2.06; and natural mortality (M) was 1.8949. This species was also the most highly exploited species of fish with an exploitation ratio of0.566 (56.6%) and exploitation rate of 0.494. The least exploited cichlid fish is (. gun/hen where an exploitation ratio of 0.43209%) and exploitation rate of 0.2225 was recorded. In C'. guntheni, total mortality was 0.726 and natural mortality was 0.413 1. In T zilli, total mortality was 1.0547 wile exploitation ratio was 0.3674 (3 6.74%) and an exploitation rate was 0.2394. In T cahrae. total mortality was 1.8662: exploitation ratio was 0.4786 with an exploitation rate of 0.4045. (7 page document)
Resumo:
bulletin which documented the major and important springs in the state (Ferguson et al., 1947). This publication was revised in 1977, with many previously undocumented springs and many new water-quality analyses being added (Rosenau et al., 1977). The Florida Geological Survey's report on first magnitude springs (Scott et al., 2002) was the initial step in once again updating and revising the Springs of Florida bulletin. The new bulletin includes the spring descriptions and water-quality analyses from Scott et al. (2002). Nearly 300 springs were described in 1977. As of 2004, more than 700 springs have been recognized in the state and more are reported each year. To date, 33 first magnitude springs (with a flow greater than 100 cubic feet per second or approximately 64.6 million gallons of water per day) have been recognized in Florida, more than any other state or country (Rosenau et al., 1977). Our springs are a unique and invaluable natural resource. A comprehensive understanding of the spring systems will provide the basis for their protection and wise use. (Document pdf contains 677 pages)
Resumo:
The Vancouver Lake warmwater fish population was sampled during the fall of 1998. Vancouver Lake is a large lake, connected directly to the Columbia River through the Lake River to the north and the constructed flushing channel on the eastern shore. A total of 16 species of fish were encountered, mostly warmwater game fish with a few seasonal visitors. The lake has suffered from water quality problems, and during the 1970s, it was dredged, and a channel was created to aid in increasing the water turnover rate, effectively connecting both ends of the lake to the Columbia River. As there is direct access to the Columbia River, managing this lake as a closed system may prove difficult. It is of our opinion that it may be a more effective use of resources to increase the anglers access to the available resources through providing improved boat launch access, and fish habitat structure throughout the lake. Additionally, educating the public about the how-to's of common carp angling could possibly open up additional resources not commonly utilized by the public. (Document pdf contains 38 pages)
Resumo:
Vancouver Lake, located adjacent to the Columbia River and just north of the Vancouver-Portland metropolitan area, is a "dying" lake. Although all lakes die naturally in geologic time through the process of eutrophication,* Vancouver Lake is dying more rapidly due to man's activities and due to the resultant increased accumulation of sediment, chemicals, and wastes. Natural eutrophication takes thousands of years, whereas man-made modifications can cause the death of a lake in decades. Vancouver Lake does, however, have the potential of becoming a valuable water resource asset for the area, due particularly to its location near the Columbia River which can be used as a source of "flushing" water to improve the quality of Vancouver Lake. (Document pdf contains 59 pages) Community interest in Vancouver Lake has waxed and waned. Prior to World War II, there were relatively few plans for discussions about the Lake and its surrounding land area. A plan to drain the Lake for farming was prohibited by the city council and county commissioners. Interest increased in 1945 when the federal government considered developing the Lake as a berthing harbor for deactivated ships at which time a preliminary proposal was prepared by the City. The only surface water connection between Vancouver Lake and the Columbia River, except during floods, is Lake River. The Lake now serves as a receiving body of water for Lake River tidal flow and surface flow from creeks and nearby land areas. Seasonally, these flows are heavily laden with sediment, septic tank drainage, fertilizers and drainage from cattle yards. Construction and gravel pit operations increase the sediment loads entering the Lake from Burnt Bridge Creek and Salmon Creek (via Lake River by tidal action). The tidal flats at the north end of Vancouver Lake are evidence of this accumulation. Since 1945, the buildup of sediment and nutrients created by man's activities has accelerated the growth of the large water plants and algae which contribute to the degeneration of the Lake. Flooding from the Columbia River, as in 1968, has added to the deposition in Vancouver Lake. The combined effect of these human and natural activities has changed Vancouver Lake into a relatively useless body of shallow water supporting some wildlife, rough fish, and shallow draft boats. It is still pleasant to view from the hills to the east. Because precipitation and streamflow are the lowest during the summer and early fall, water quantity and quality conditions are at their worst when the potential of the Lake for water-based recreation is the highest. Increased pollution of the Lake has caused a larger segment of the community to become concerned. Land use and planning studies were undertaken on the Columbia River lowlands and a wide variety of ideas were proposed for improving the quality of the water-land environment in order to enhance the usefulness of the area. In 1966, the College of Engineering Research Division at Washington State University (WSU0 in Pullman, Washington, was contacted by the Port of Vancouver to determine possible alternatives for restoring Vancouver Lake. Various proposals were prepared between 1966 and 1969. During the summer and fall of 1967, a study was made by WSU on the existing water quality in the Lake. In 1969, the current studies were funded to establish a data base for considering a broad range of alternative solutions for improving the quantity and quality of Vancouver Lake. Until these studies were undertaken, practically no data on a continuous nature were available on Vancouver Lake, Lake River, or their tributaries. (Document pdf contains 59 pages)
Resumo:
Population characteristics of largemouth bass ( Micropterus salmoides L.) including growth, body condition (relative weight), survival, and egg production were examined in relation to abundance of submersed aquatic vegetation (SAV) coverage (primarily hydrilla [ Hydrilla verticillata L.f. Royle]) in three embayments of Lake Seminole, GA, and compared to a previous study conducted in 1998. (PDF has 8 pages.)
Resumo:
Thirty largemouth bass ( Micropterus salmoide s Lacepde) were implanted with radio tags in late October 2003 in two coves of Lake Seminole, Georgia, and tracked over a 24-hour period about every 10 days to determine their response to herbicide application. After five weeks of tracking, hydrilla ( Hydrilla verticillata Royle) in each cove was treated in early December 2003 with dipotassium salt of endothall (Aquathol K; 7-oxabicyclo [2.2.1] heptane-2,3-dicarboxylic acid) at a rate of 3.5 ppm. Largemouth bass were tracked during application and tracking continued for three months post treatment to assess effects of herbicide treatment on activity patterns. The treatment in Desser Cove successfully reduced hydrilla in approximately half the cove. However, the treatment in Peacock Lake completely eliminated all submersed aquatic vegetation (SAV) by April 2004. Movement and activity centers remained similar between treatment periods in Desser Cove, but increased after treatment in Peacock Lake. Depth occupied by telemetered fish decreased after Aquathol K treatment in both coves. In general, behavior of largemouth bass did not change appreciably during treatment, and only minor changes were observed in the posttreatment period in Peacock Lake, where all SAV was eliminated. Fish showed little attraction to or movement away from treatment areas, and fish migration from either cove was nil after treatment. Application of Aquathol K and subsequent reduction of SAV had little effect on largemouth bass behavior or movement. (PDF has 8 pages.)
Resumo:
Thousands of hectares of native plants and shallow open water habitat have been displaced in Lake Okeechobee’s marsh by the invasive exotic species torpedograss ( Panicum repens L.). The rate of torpedograss expansion, it’s areal distribution and the efficacy of herbicide treatments used to control torpedograss in the lake’s marsh were quantified using aerial color infra red (IR) photography.(PDF has 6 pages.)