50 resultados para 170-1041B
Resumo:
Research on assessment and monitoring methods has primarily focused on fisheries with long multivariate data sets. Less research exists on methods applicable to data-poor fisheries with univariate data sets with a small sample size. In this study, we examine the capabilities of seasonal autoregressive integrated moving average (SARIMA) models to fit, forecast, and monitor the landings of such data-poor fisheries. We use a European fishery on meagre (Sciaenidae: Argyrosomus regius), where only a short time series of landings was available to model (n=60 months), as our case-study. We show that despite the limited sample size, a SARIMA model could be found that adequately fitted and forecasted the time series of meagre landings (12-month forecasts; mean error: 3.5 tons (t); annual absolute percentage error: 15.4%). We derive model-based prediction intervals and show how they can be used to detect problematic situations in the fishery. Our results indicate that over the course of one year the meagre landings remained within the prediction limits of the model and therefore indicated no need for urgent management intervention. We discuss the information that SARIMA model structure conveys on the meagre lifecycle and fishery, the methodological requirements of SARIMA forecasting of data-poor fisheries landings, and the capabilities SARIMA models present within current efforts to monitor the world’s data-poorest resources.
Resumo:
We assayed allelic variation at 19 nuclear-encoded microsatellites among 1622 Gulf red snapper (Lutjanus campechanus) sampled from the 1995 and 1997 cohorts at each of three offshore localities in the northern Gulf of Mexico (Gulf). Localities represented western, central, and eastern subregions within the northern Gulf. Number of alleles per microsatellite per sample ranged from four to 23, and gene diversity ranged from 0.170 to 0.917. Tests of conformity to Hardy-Weinberg equilibrium expectations and of genotypic equilibrium between pairs of micro-satellites were generally nonsignificant following Bonferroni correction. Significant genic or genotypic heterogeneity (or both) among samples was detected at four microsatellites and over all microsatellites. Levels of divergence among samples were low (FST ≤0.001). Pairwise exact tests revealed that six of seven “significant” comparisons involved temporal rather than spatial heterogeneity. Contemporaneous or variance effective size (NeV) was estimated from the temporal variance in allele frequencies by using a maximum-likelihood method. Estimates of NeV ranged between 1098 and >75,000 and differed significantly among localities; the NeV estimate for the sample from the northcentral Gulf was >60 times as large as the estimates for the other two localities. The differences in variance effective size could ref lect differences in number of individuals successfully reproducing, differences in patterns and intensity of immigration, or both, and are consistent with the hypothesis, supported by life-history data, that different “demographic stocks” of red snapper are found in the northern Gulf. Estimates of NeV for red snapper in the northern Gulf were at least three orders of magnitude lower than current estimates of census size (N). The ratio of effective to census size (Ne/N) is far below that expected in an ideal population and may reflect high variance in individual reproductive success, high temporal and spatial variance in productivity among subregions or a combination of the two.
Resumo:
Recreational creel survey data from 28,923 intercepts collected from Biscayne National Park, Florida and surrounding waters were analyzed for January 1976 through July 1991, prior to disruptions caused by Hurricane Andrew in 1992. A total of 261,268 fish and shellfish representing 170 species or higher taxa were recorded. The average trip landed 9.03 fish and/or shellfish. Mean annual landings per angler were 4.77 fish/angler/trip (from 3.8 in 1991 to 5.83 in 1981) and dropped significantly for each of the 2 years following Florida's adoption of mutiple new minimum size limits in 1985 and 1990. The relative contribution to total numerical landings by recreational party type were: skilled anglers (34.0%), food (19.8%), family (14.5%), novice (11.5%), spearfishing (10.3%), lobstering (9.6%), and other (0.3%). FIve species or higher taxa accounted for more than 50% of total landings by number: white grunt, Haemulon plumieri, 15.8%; spiny lobster, Panulirus argus, (10.6%; gray snapper, Lutjanus griseus, 10.6%; unidentified grunts, Haemulon spp., 7.3%; and dolphin, Coryphaena hippurus, 6.6%. An average of 4.39 fish or shellfish were reported released per trip. Five taxa accounted for 67% of all releases. Lobster divers reported the highest average release rate (5.73 per trip) and spearfishing the lowest (0.70 per trip). The ratio of releases to landings was 0.49:1 for all taxa, but ranged from 0.03:1 for dolphin to 1.19:1 for unidentified grunts. Spearfishing accounted for 12.0% of the total fishing trips sampled but only 10.3% of the total number organisms landed and 7.6% of all organisms caught. Hogfish, Lachnolaimus maximus, accounted for 49% if total spearfishing landings (13,286 of 27,015) and 84.3% of total 15,762 hogfish landed.
Resumo:
Commercial catch and effort data were fit to the Leslie model to estimate preexploitation abundance and the catchability coefficient of slipper lobster, Scyllarides squammosus, in the Northwestern Hawaiian Islands (NWHI). A single vessel fished for 34 consecutive days in the vicinity of Laysan Island and caught 126,127 total slipper lobster in 36,170 trap hauls. Adjusted catch of legal slipper lobster dropped from a high of 3.70 to 1.16 lobster per trap haul. Preexploitation abundance at Laysan Island was an estimated 204,000 legal slipper lobster, which was extrapolated to yield an estimate of 1.2 X 106 to 3.8 X 106 lobster for the entire NWHI slipper lobster fishery.