27 resultados para excess nitrogen
Resumo:
Primary productivity in many coastal systems is nitrogen (N) limited; although, phytoplankton productivity may be limited by phosphorus (P) seasonally or in portions of an estuary. Increases in loading of limiting nutrients to coastal ecosystems may lead to eutrophication (Nixon 1996). Anthropogenically enhanced eutrophication includes symptoms such as loss of seagrass beds, changes in algal community composition, increased algal (phytoplankton) blooms (Richardson et al. 2001), hypoxic or anoxic events, and fish kills (Bricker et al. 2003).
Resumo:
Spatio-temporal variations in the physicochemical and biological parameters in the Morlaix estuary on the Brittany coast of France were studied. Hydrographically, the estuary can be classified into 3 segments: the upper estuary where stratification always persists, the lower estuary where vertical homogeneity is permanent, and a middle estuary where there is a regular oscillation of stratification and homogeneity during every tidal cycle, stratification being associated with slack waters and homogeneity, with ebb and flood. Nitrogen pollution in the estuary is very intense.
Resumo:
Mangroves are defined as a collection of woody plants and the associated fauna and flora that use a coastal depositional environment. Here the specific effects of salinity changes in mangroves have been examinated.
Resumo:
Nitrogen and phosphorus requirements of a chain-forming diatom, Skeletonema costatum (Greville) Cleve, collected from Yatsushiro Sea, Japan, were investigated in a laboratory culture experiment. Sodium nitrate and sodium glycerophosphate were used as nitrogen and phosphorus sources, respectively. Cultures were grown in modified Provasoli's ASP2NTA medium (Provasoli et al. 1957) at 25±1°C, light intensity 60 µE mˉ² secˉ¹ and photoperiod 12:12-h, L:D cycle. Optimum growth was observed at nitrate concentrations of 3-10 mglˉ¹ and phosphate concentrations of 1.5-15 mglˉ¹. Adequate growth was also found at the nitrate concentration of up to as high as 300 mglˉ¹. Significantly poorer growth was found at lower nitrate (<3.0 mglˉ¹) and higher phosphate (>15 mglˉ¹) concentrations. From the present study, it is concluded that S. costatum can grow well at wide ranges of nitrate concentrations but is sensitive to higher phosphate concentrations.
Resumo:
Changes in the major protein nitrogen fractions (sarcoplasmic, myofibrillar, stroma) have been studied in two species of prawns and in oil sardine held in ice storage. Myofibrillar proteins were observed to get denatured at a rapid rate as determined by salt extractability method. The sarcoplasmic proteins were not denatured to any considerable extent. With sardine however, the extraction of myofibrillar proteins was inhibited rather in the uniced condition itself presumably owing to the presence of free fatty acids.
Resumo:
Influence of two different forms of nitrogen on growth and physiological aspects of water-cultured seedlings of Rhizophora apiculata was studied. Of the two forms of nitrogen supplied to the growth medium, ammonium nitrogen was better than nitrate nitrogen by exhibiting increased dry matter production, shoot length, leaf area and also enhanced the contents of carotenoids, chlorophylls and their presence in photosystems and light harvesting protein complex.
Resumo:
The effect of the physicochemical parameters of water and soil on the distribution of nitrogen-fixing bacteria and their nitrogen-fixing capacity was studied. Four species of nitrogen-fixing bacteria, e. g. Azotobacter chroococcum, A. vinelandii, A. beijerinckii and A. armeniacus, were recorded from water and soil samples of Mumbai coast. A higher number of bacterial populations were observed in sediment than in water samples. A positive correlation was observed between the dissolved organic matter and nitrogen fixing bacterial populations of water as well as between available phosphorus and the nitrogen-fixing bacteria of sediment. The nitrogen-fixing capacity of A. chroococcum was found to be 1.076 nmol C sub(2) H sub(4)/l/d and that of A. vinelandii was 0.965 nmol C sub(2) H sub(4)/l/d. Station 1 showed higher level of nitrogenase activity in comparison to other four stations.
Resumo:
The moisture and free alpha amino nitrogen contents of some important food fishes and shell fishes of Kakinada region have been studied. Crustaceans and molluscs contain free alpha amino acids in quantities several times higher than all other aquatic animals examined in this study. Their probable role in the physiological activities of these animals has been discussed.
Resumo:
Liquid nitrogen frozen products are biochemically and organoleptically superior to conventional plate frozen products but beneficial effect of liquid nitrogen freezing over conventional plate freezing can exist only up to 59 days at a commercial storage temperature of -18°C.
Resumo:
Non-symbiotic, free living, nitrogen fixing bacteria, Azotobacter sp. was estimated in sediments of estuarine, marine, backwater and mangrove environments of Portonovo. Number of colony forming units (CFU) of Azotobacter sp. was less (5 to 27 cells/g of dry sediment). CFU of total heterotrophic bacteria (THB), actinomycetes and fungi were between 4.1x10 super(6) and 4.5x10 super (7), 0.8x10 super(5) and 4.9x10 super(5), 1.1x10 super(5) and 3.8x10 super(5)/g respectively. Mangrove sediments contained more CFU of the above microbial groups.
Resumo:
Prawn meat treated with Streptococcus pyogenes B-49-2 culture and Staphylococcus aureus ATCC-12598 culture were frozen in conventional plate freezer at -40°C and by spray type liquid nitrogen freezer. The frozen products were stored at -18°C. Streptococcus pyogenes B-49-2 showed low sensitivity to cold injury during freezing and frozen storage. Staphylococcus aureus ATCC-12598 survived during the entire storage period of 240 days. Total bacterial count of untreated prawn meat was found to be always lesser in liquid nitrogen frozen products than that in plate frozen products.
Resumo:
A laboratory based 2x3 factorial experiment was conducted for 12 weeks to investigate the influences of dietary lipid and phosphorus (P) levels on retention and excretion of phosphorus and nitrogen (N) in fingerling red sea bream. Two levels of lipid (210 and 260 g/kg) and three levels of phosphorus (17, 14 and 12 g/kgˉ¹) in the dry diets were tested. Duplicate groups of 25 red sea bream (average weight 3.74±0.07 g) per 60L glass tank were fed experimental diets three times a day near to satiation level at 22 to 28°C water temperature. A reduction in dietary fish meal from 500 to 300 g/kg dry diet, corresponding to a supplementation in both dietary lipid and P resulted in significant increase in both P and N retention which resulted in the reduction of their excretion by red sea bream. The overall results of the present study demonstrated that both lipid and phosphorus supplementation are necessary for developing less-polluting feed which in turn, reduce fish meal level in the diet of fingerling red sea bream. Further studies in this regard with different size and age groups of red sea bream are warranted.