44 resultados para Plants, Toxic.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The toxic effects of two herbicides Round up (gliphosate) and 2,4-D (herbazol) were tested on Pistia stratiotes (Linn. Araceae) samples cultivated in glass aquariums. The gliphosate appears to be more toxic on Pistia Stratiotes than 2,4-D. It was then tested on tilapia Sarotherodon melanotheron juveniles. The lethal dose for tilapia (CL50 = 13.25 mg.l -1) is about 18, 37 and 74 times higher than the glyphosate toxic dose for plants at 1, 2 and 4 meters water depth respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The daily consumption rates and preference of juvenile Tilapia rendalli for some macrophytes, Ceratophyllum demersum, Lagarosiphon major, Najas pectinatas and Valisneria aethiopica were determined. Fish were offered single macrophyte diets to determine daily consumption and a mixture of the 4 macrophytes in equal quantities to determine selection. Consumption rates were 821.50 mg, 829.05 mg, 940.00 mg and 2293.53 mg per fish per day, respectively. The differences in consumption rates were significant. Preference was shown for V.aethiopica, whilst C.demersum was least selected. Fish fed on single species lost weight whereas those fed on a variety of macrophytes gained in weight.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need to estimate percentages and/or numbers occurs frequently during practical research work; accurate but rapid estimates can be useful when planning research programmes. Charts are provided that may be used as a visual aid to estimating numbers of animals/plants in a specific situation, for example, the number of fish fry in a subsample from a hatchery tank, or the percentage composition of a sample such as the percentage algal cover in a pond.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1999, the Chesapeake Bay Program completed a survey of existing data on chemical contaminants and the potential for bioeffects in 38 tidal river systems of Chesapeake Bay. This review led to the identification of 20 areas for which there were insufficient data to adequately characterize the potential for contaminant bioeffects on the Bay’s living resources. The goal of the present study was to estimate the current status of ecological condition in five of these areas and thus help to complete the overall toxics inventory for the Bay. These five systems included the Chester River, Nanticoke River, Pocomoke River, Lower Mobjack Bay (Poquosin and Back Rivers) and the South and Rhode Rivers. This study utilized a Sediment Quality Triad (SQT) approach in combination with additional water-column contaminant analysis to allow for a “weight of evidence” assessment of environmental condition. A total of 60 stations distributed among the five systems, using a probabilistic stratified random design, were sampled during the summer of 2004 to allow for synoptic measures of sediment contamination, sediment toxicity, and benthic condition. Upon completion of all analyses, stations were assigned to one of four categories based on the three legs of the triad. Stations with high sediment quality had no hits on any of the three legs of the triad; those with moderate quality had one hit; those with marginal quality had two hits; and those with poor quality had hits for all three legs of the triad. The Pocomoke River had by far the largest proportion of the total area (97.5%) classified as having high sediment quality, while the Rhode/South system had the highest proportion (11.4%) classified as poor. None of the stations in the Chester River, Nanticoke River, and Lower Mobjack Bay systems were classified as poor. More than 65% of the area of each of the five systems was classified with high to moderate sediment quality. The Rhode/South system had 30.4% of total area classified with marginally to severely poor quality. The results of this study highlight the importance of using multiple indicators and a “weight of evidence” approach to characterize environmental quality and the potential bioeffects of toxic contaminants.