292 resultados para Lakes.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a fishery, the immensely large (c. 68,800 km2 ) Lake Victoria is a unique ecosystem which together with a riverine connection to the Lake Kyoga basin share a common endemic "Victorian" fish fauna (Greenwood 1966). Until the 1950s, the single socio economically most important species of fish in these two lakes was the native Oreochromis esculentus Graham (Graham 1929) even though the lake also contained a second native tilapiine, 0reochromis variabilis , and over 300 other fish species (Beauchamp, 1956).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rastrineobola argentea locally known as mukene in Uganda, omena in Kenya and dagaa in Tanzania occurs in Lake Nabugabo, Lake Victoria, the Upper Victoria Nileand Lake Kyoga (Greenwood 1966). While its fishery is well established on Lakes Victoria and Kyoga, the species is not yet exploited on Lake Nabugabo. Generally such smaller sized fish species as R. argentea become important commercial species in lakes where they occur when catches of preferred largersized table fish start showing signs ofdecline mostly as a result of overexploitation. With the current trends of declining fish catches on Lake Nabugabo, human exploitation of mukene on this lake is therefore just a matter of time. The species is exploited both for direct human consumption and as the protein ingredient in the manufacture of animal feeds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lake Victoria is the second largest lake in the world (69000km2) by surface area, but it is the shallowest (69m maximum depth) of the African Great Lakes. It is situated across the equator at an altitude of 1240m and lies in a shallow basin between two uplifted ridges of the eastern and western rift valleys (Beadle 1974). Despite their tropical locations, African lakes exhibit considerable seasonality related to the alteration of warm, wet and cool, dry seasons and the accompanying changes in lucustrine stratification and mixing (Tailing, 1965; 1966; Melack 1979; Hecky& Fee 1981; Hecky& Kling,1981; 1987; Bootsma 1993; Mugidde 1992; 1993). Phytoplankton productivity, biomass and species composition change seasonally in response to variations in light environment and nutrient availability which accompany changes in mixed layer depth and erosion or stabilization of the metalimnion / hypolimnion (Spigel & Coulter 1996; Hecky et al., 1991; Tailing 1987). Over longer, millennial time scales, the phytoplankton communities of the African Great Lakes have responded to variability in the EastAfrican climate (Johnson 1996; Haberyan& Hecky, 1986) which also alters the same ecological factors (Kilham et al., 1986). Recently, over the last few decades, changes in external and or internal factors in Lake Victoria and its basin have had a profound inlluence on the planktic community of this lake (Hecky, 1993; Lipiatou et al., 1996). The lake has experienced 2-10x increases in chlorophyll and 2x increase in primary productivity since Tailing's observations in the early 1960s (Mugidde 1992, 1993). In addition to observed changes in the lake nutrient chemistry (Hecky & Mungoma, 1990; Hecky & Bugenyi 1992; Hecky 1993; Bootsma & Hecky 1993), the deep waters previouslyoxygenated to the sediment surface through most of the year are now regularly anoxic(Hecky et al., 1994).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Worldwide, human activity in the watershed has been found to induce lake responses at various levels, including at population and ecosystem scale. Recently, Carignan and Steedman (2000) reported on disruptions of biogeochemical cycles in temperate lakes following watershed deforestation and lor wildfire and Carignan et al., (2000 a, b) concluded that water quality and aquatic biota are strongly influenced by disturbances in the watershed. Similarly, Lake Victoria is no exception as people in its catchment have exploited it for the last hundred years or more, but have now begun to understand the extent to which they have thrown the lake into disorder and how their increasing activity in the watershed have driven some environmental changes within and around the lake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Victoria and Kyoga lake basins form the major aquatic system of this study (Fig. I). The two lake basins share a common evolutionary history and have similar native fish faunas (Graham 1929, Worthington 1929). The two main lakes have also had similar impacts by introduction of Nile perch Lates niloticus and therefore these two lakes can be considered to be similar for ichiogeographical purposes. These lake basins have many satellite lakes isolated from one another and from the main lakes Victoria and Kyoga by swamps and other barriers. Some of these satellite lakes still possess stocks of endemic fish species which are almost extinct from the main water bodies. It was therefore considered that understanding of these lakes would contribute to the knowledge base required to solve some of the problems experienced in Lake Victoria and Kyoga especially the loss in trophic diversity arising. The study was carried out in these two main water bodies (Kyoga and Victoria) and on other satellite lakes e.g Wamala, Kachera, Mburo, Kayanja and Kayugi in the Victoria lake basin and lakes Nawampasa, Nyaguo, Agu, Gigate, Lemwa and Kawi in the Kyoga lake basin (Figs. 2, 3, 4, 5 & 6).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physical-chemical characteristics of any aquatic ecosystem include pH, conductivity, and temperature, water transparency, nutrient and the chlorophyll-a levels. Physical and chemical factors of any ecosystem determine the type and quality of flora present in it and these forms the basis on which the system operates. The elements required in largest amounts for plant productions are carbon, phosphorus, nitrogen, and silicon, which is important for diatoms as a major component of the cell wall. Nutrients may limit algal productivity in the tropics despite the high temperature there allowing rapid nutrient recycling. Nutrients most likely to be limiting African lakes are nitrogen (Talling & Talling 1965; Moss 1969; Lehman & Branstrator 1993, 1994) and phosphorus (Melack.et al l982; Kalff 1983) while silicon may limit diatom growth (Hecky & Kilham 1988). The objective of the study is to investigate the impact of physical-chemical characteristics on the distribution and abundance of organisms in the major aquatic ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A great part of Uganda is endowed with water bodies in the forms of rivers and open water lakes. These bodies are never alone. They are either flanked or associated with plants, which are adapted to the wet conditions. They are so characteristic that they are part and parcel of the aquatic ecosystems. They occupy various positions depending on the amount of water in the relevant habitats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological diversity of an ecosystem is considered a reliable measure of the state of health of the ecosystem. In Uganda's large lakes, the Victoria and Kyoga, the past three decades have been characterized by profound changes in fish species composition following the introduction of the piscivorous Nile perch (Oguto-Ohwayo 1990). Over 300 haplochromine cichlid species comprising a wide range of trophic groups were lost along with a host of non-cichlid fishes which occupied virtually all available ecological niches and in the lakes (Witte 1992). A second major ecological event has been the gradual nutrient enrichment of the water bodies (eutrophication) from diffuse and point sources, while at the same time pollutants have also gained entrance into the water systems in pace with indusfrial development and human population increases in the lake basins. Eutrophication and pollution have drastically altered the physical and-chemical character of the water medium in which different fauna and flora thrive. In Lake Victoria these alterations have resulted in changes of algal species composition from pristine community dominated by chlorophytes and diatoms (Melosira etc) to one composed largely of blue-green algae or Cyanobacteria (Microcystis, Anabaena, Planktolyngbya etc) (Mugidde 1993, Hecky 1993).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction of exotic fish species especially the Nile perch Lates niloticus, is believed to be responsible for the decline of fish species diversity in lakes Victoria, Kyoga and Nabugabo.About 60% of the haplochromine cichlids are thought to have become extinct from L. Victoria due to predation by the Nile perch. However there are many lakes satelite to the lakes Victoria and Kyoga basins which still have fish fauna similar to that of the main lakes. many of the satellite lakes are separated from the main lakes in, which Nile perch was introduced by extensive swamps that provide a barrier to Nile perch .A survey was carried out in a number of these satelite lakes and an inventory made of existing fish species. Their distribution and relative abundances were also determined. The lakes studied included Nawampasa, Nakuwa,Kawi Lamwa Gigate, Nyaguo, Agu, Nabugabo. Kayanja, Kaytigi, Mburo, Kachera and Wamala.Some habitats within the main lakes Victoria and Kyoga, especially those with rocky outcrops· and macrophyte cover that provide refugia for endangered species from Nile perch,were also surveyed) Various stations along the River Nile were also sampled to quantify the fish species that are still resent. Kyoga minor lakes were found to have the highest number of fish species especially of haplochromine cichlids. Many haplochromine trophic groups that were thought to be extinct from 1. Victoria still occur in these lakes.!Some of the satellite lakes, especially lakes Kayugi, Mburo and Kachera still contain .healili populations of oreochromis. I esculentus that could be used as brood stock in fish farming. Many of these lakes should .I ( I therefore be protected for conservation offish species diversity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The shore margins of Lakes in the Victoria basin are highly dented and mostly swampy, fringed by Papyrus and other wetland vegetation types important habitats for herpetofauna and wetland adapted mammals. Of recent, the extent of the 'wetland' has been extended in several places by the Water Hyacinth (Eichornia cryaseps). Ecologically, amphibians are important in many ways; they are mostly predators, acting as primary and secondary carnivores. Their prey consists mostly of insects, some of which are pests to crops or disease vectors. They are also inter-inked in food chains, often acting as food for other vertebrates, such as pigs, birds, snakes and sometimes man. Because of their ectothermic physiology, the life history and ecology of amphibians often differ markedly from that of birds or mammals (McCollough el ai, (992).Amphibians are known to be an easily recognisable taxon in given habitats; and populations are sometimes specialised within a narrow habitat. This makes it easy and practical to monitor changes in composition over time, given different onditions (Heyer el al 1994, Phillips 1990). Impacts on their habitat are reflected in changes in numbers and species diversity in a short time. These are some of the factors that have made amphibians to be recognised, nowadays, as good indicators of habitat change

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cichlids are known for their explosive radiation especially in the African Great Lakes marked with a high level of lake endemism. These fishes have been characterized mainly along trophic and habitat differences, by variation in morphological structures such as teeth and jaws and by differences in body shape and coloration. Cichlids are important as a microcosm of macroevolution. The explosive radiation, young evolutionary scale, and the isolation of groups characterized with high levels of endemism and presence of living fossils makes the group important for evolutionary and genetic studies. Lake Victoria region cichlids which are isolated and relatively more recent in evolution were the last to be appreciated in their diversity. Recently Ole Seehausen has found scores of rock fishes in Lake Victoria which were up to then thought to be absent from the Lake and only known to occur in Lakes Malawi and Tanganyika. Greenwood put together the species groups of Lake Victoria, and later in the early 1980's revised the classification of haplochromine species to reflect the phyletic origin and interrelationship of the various groups in Lake Victoria region. Melan Stiassny has been interested in early evolution of cichlids while the likes of Paul Fuerst and Lees Kaufman and Axel Meyer have been interested and are working to explain the speciation mechanisms responsible for the explosive radiation and evolution of cichlids. Locally S.B Wandera and his student Getrude Narnulemo are spearheading the biodiversity and taxonomic studies of cichlids in Lake Victoria region

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An overview of the biology and ecology of some of the constantly less important commercial species is given below. These included Bagrus docmac, Clarias gariepinus, Protopterus aethiopicus, Labeo victorianus, Barbus spp, Mormyrids, Synodontis spp, and Schilbe intermedius. The stocks of most of these species declined due to over-exploitation and introduction of non-native fishes especially Nile perch. A few of these taxa still survive in the main lake and others in satellite lakes. The current status of these species in the Victoria lake basin is not known but the available information provided some information on some habitat and other requirements of some of these originally important species of the Victoria lake basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Victoria and Kyoga lake basins had a high fish species diversity with many fish species that were found only in these lakes. Two Tilapiines species Oreochromis esculentus and Oreochromis variabilis were the most important commercial species in these lakes and were found nowhere else on earth except in the Victoria and Kyoga lake basins (Graham 1929, Worthington 1929). Lakes Kyoga and Nabugabo also had endemic haplochromine species (Worthington 1929, Trewavas 1933, Greenwood 1965, 1966). As stocks of introduced species increased, stocks of most of the native species declined rapidly or disappeared altogether. The study was carried out on Lakes Victoria and Kyoga, River Nile, some selected satellite lakes from the two basins namely Lakes Mburo, Kachera, Wamala, Kayanja, Kayugi, Nabugabo, Victoria, Victoria nile and River Sio(Victoria lake basin). Lakes Kyoga (Iyingo), Nawampasa, Nakuwa, Gigati, Nyaguo, Agu, Kawi and Lemwa (Kyoga lake basin). Species composillon and relative abundance of fishes were estimated by detennining the overall average total number of each species encountered. A trophic consists of species using the same food category. Shannon-Weaver Index of diversity H (Pielou, 1969) and number of trophic groups, were used to estimate the Trophic diversity of various fish species in the lakes. Food analysis has been done on some fishes in some of the sampled lakes and is still going on, on remaining fishes and in some lakes. Generally fish ingested detritus, Spirulina, Melosira, filamentous algae, Planktolyngbya, Microcysists, Anabaena, Merismopedia, Spirogyra, higher plant material, rotifers, Ostracodes, Chironomid larvae and pupae, Choaborus larvae, Odonata, Povilla, Insect remains, Caridina, fish eggs and fish. Eight trophic groups were identified from thes food items ingestes. These included detritivores, algae eaters, higher plant eaters, zooplanktivores, insectivores, molluscivores, prawn eaters, paedophages and piscivores. Trophic diversity by number of trophic groups was highest in Lake Kyoga (6) followed by lakes Kayugi, Nabugabo, River Nile and Mburo (3) and the lowest number was recorded in kachera (2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oreochromis niloticus (the Nile tilapia) and three other ti1apine species: Oreochromis leucostictus, Tilapia zi11ii and T. rendallii were introduced into Lakes Victoria, Kyoga and Nabugabo in 1950s and 1960s. The source and foci of the stockings are given by Welcomme (1966) but the origin of the stocked species was Lake Albert. The Nile tilapia was introduced as a management measure to relieve fishing pressure on the endemic tiapiines and, since it grows to a bigger size, to encourage a return to the use of larger mesh gill nets. Ti1apia zillii was introduced to fill a vacant ,niche of macrophytes which could not be utilised' by the other tilapiines. Tilapia rendallii, and possibly T. leucosticutus could been introduced into these lakes accidently as a consquence of one of the species being tried out for aquaculture. The Nile perch and Nile tilapia have since fully established themselves and presently dominate the commercial fisheries of Lakes Victoria and Kyoga. The original fisheries based on the endemic tilapiines O. escu1entus and o. variabilis have collapsed. It is hypothesized that the ecological and limnological changes that are observed in Lakes Victoria and Kyoga are due to a truncation of the original food webs of the two lakes. Under the changed conditions, O. niloticus to be either playing a stabilizing role or fuelling nutrient turnover in the lakes. Other testable hypotheses point to the possible role of predation by the Nile perch, change in regional climate and hydrology in the lake basins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There have been considerable changes in fish species composition in Lakes victoria, Kyoga and Nabugabo since the Nile perch were introduced. Populations of most of the native species have declined and many species may have become extinct. The original decline in the fish stocks was due to overfishing but the recent and more drastic decline has been attributed to predation by the Nile perch. Nile perch feeds on invertebrates changing to a piscivorous diet with size. Haplochromine cichlids, which were the most abundant fish in Lakes Victoria just before the Nile perch populations started increasing rapidly have been depleted. As more suitable types of prey were depleted in the new habi tats, Nile perch switched to other prey types to the extent of feeding even on its own young. There are, fears that the Nile perch will overshoot its food supply, resulting in a reduction of its own population and subsequently a collapse in the fishery (FAD 1985).