161 resultados para Food Legislation
Resumo:
This article is a short discussion of the requirements for live food production in aquaculture and a brief presentation of the processes involved.
Resumo:
Most of the earth's ecosystems are experiencing slight to catastrophic losses of biodiversity, caused by habitat destruction, alien species introduction, climate change and pollution (Wilcove et al., 1998). These human effects have led to the extinction of native fish species, the collapse of their populations and the loss of ecological integrity and ecosystem functioning (Ogutu-Ohwayo & Hecky, 1991; Witte et al. , 1992a; Mills et al., 1994; Vitousek et al., 1996). Food webs are macro-descriptors of community feeding interactions that can be used to map the flow of materials and nutrients in ecosystems (Jepsen & Winemiller, 2002). Comparative food web studies have been used to address theoretical questions such as 'does greater trophic connectivity increase stability?' (Cohen et al., 1990), and 'does the number of trophic levels increase with productivity?' (Briand & Cohen, 1987). Answers to such questions have obvious applications for natural resources management. From a multi-species fisheries standpoint, there is a need to understand consumer-resource dynamics within complex trophic networks.
Resumo:
The Victoria and Kyoga lake basins had a high fish species diversity with many fish species that were found only in these lakes. Two Tilapiines species Oreochromis esculentus and Oreochromis variabilis were the most important commercial species in these lakes and were found nowhere else on earth except in the Victoria and Kyoga lake basins (Graham 1929, Worthington 1929). Lakes Kyoga and Nabugabo also had endemic haplochromine species (Worthington 1929, Trewavas 1933, Greenwood 1965, 1966). As stocks of introduced species increased, stocks of most of the native species declined rapidly or disappeared altogether. The study was carried out on Lakes Victoria and Kyoga, River Nile, some selected satellite lakes from the two basins namely Lakes Mburo, Kachera, Wamala, Kayanja, Kayugi, Nabugabo, Victoria, Victoria nile and River Sio(Victoria lake basin). Lakes Kyoga (Iyingo), Nawampasa, Nakuwa, Gigati, Nyaguo, Agu, Kawi and Lemwa (Kyoga lake basin). Species composillon and relative abundance of fishes were estimated by detennining the overall average total number of each species encountered. A trophic consists of species using the same food category. Shannon-Weaver Index of diversity H (Pielou, 1969) and number of trophic groups, were used to estimate the Trophic diversity of various fish species in the lakes. Food analysis has been done on some fishes in some of the sampled lakes and is still going on, on remaining fishes and in some lakes. Generally fish ingested detritus, Spirulina, Melosira, filamentous algae, Planktolyngbya, Microcysists, Anabaena, Merismopedia, Spirogyra, higher plant material, rotifers, Ostracodes, Chironomid larvae and pupae, Choaborus larvae, Odonata, Povilla, Insect remains, Caridina, fish eggs and fish. Eight trophic groups were identified from thes food items ingestes. These included detritivores, algae eaters, higher plant eaters, zooplanktivores, insectivores, molluscivores, prawn eaters, paedophages and piscivores. Trophic diversity by number of trophic groups was highest in Lake Kyoga (6) followed by lakes Kayugi, Nabugabo, River Nile and Mburo (3) and the lowest number was recorded in kachera (2).
Resumo:
In the context of the SSF Guidelines, the need now is to progressively work towards achieving food sovereignty for the small-scale fishing communities and fishworkers.
Resumo:
The brochure is to contribute to the overall goal of stimulating the adaptation of pro-poor agri-food systems innovations to improve food security and sustainable natural resource management among rural poor farmers. The paper seeks to identify and exploit opportunities for expanding market access for minor crops and NRM products. The minor crops studied included cow pea, sorghum, groundnut, sweet potato and yam.
Resumo:
The CGIAR Research Program on Aquatic Agricultural Systems (AAS) is collaborating with partners to develop and implement a foresight-based engagement with diverse stakeholders linked to aquatic agricultural systems. The program’s aim is to understand the implications of current drivers of change for fish agri-food systems, and consequently food and nutrition security, in Africa, Asia and the Pacific. Partners include the Global Forum on Agricultural Research (GFAR), the Forum for Agricultural Research in Africa (FARA) and the African Union’s New Partnership for Africa’s Development (AU-NEPAD). A key part of the program was a participatory scenario-building workshop held in July 2015 under the theme of "futures of aquatic agricultural systems and implications for fish agri-food systems in southern Africa." The objectives for the workshop were (i) to engage local stakeholders in exploring plausible futures of aquatic agricultural systems, and (ii) to broker and catalyze collaborative plans of action based on the foresight analysis. This report presents technical findings from the workshop. The CGIAR Research Program on Aquatic Agricultural Systems (AAS) is collaborating with partners to develop and implement a foresight-based engagement with diverse stakeholders linked to aquatic agricultural systems. The program’s aim is to understand the implications of current drivers of change for fish agri-food systems, and consequently food and nutrition security, in Africa, Asia and the Pacific. Partners include the Global Forum on Agricultural Research (GFAR), the Forum for Agricultural Research in Africa (FARA) and the African Union’s New Partnership for Africa’s Development (AU-NEPAD). A key part of the program was a participatory scenario-building workshop held in July 2015 under the theme of "futures of aquatic agricultural systems and implications for fish agri-food systems in southern Africa." The objectives for the workshop were (i) to engage local stakeholders in exploring plausible futures of aquatic agricultural systems, and (ii) to broker and catalyze collaborative plans of action based on the foresight analysis. This report presents technical findings from the workshop.
Resumo:
Hymenocera picta, the painted shrimp, is a possible predator of A canthaster planci. the crown-of-thorns starfish. H. picta detects food by chemical cues alone and visual cues play no part in the initial location of prey. The presence of food in the water causes the shrimp to become more active, and distance chemoreceptors are probably present in the antennules of the shrimp. Extract of A. planci has statistically similar attractive powers to an extract of Linckia multifora, the starfish supplied as food to the shrimps. The painted shrimp was not attracted to fish extract (Chaetodon sp.) and may respond only to starfish. It is suggested that although H. picta is able to kill and feed on small juvenile A. planci. it is probably an ineffective predator against larger adult Crown-of-thorns starfish.
Resumo:
The fisheries sector in Cambodia contributes 8%–12% to national GDP and 25% - 30% to agricultural GDP, with an estimated 4.5 million people involved in fishing and associated trades. Fish and other aquatic animals are important food sources, contributing an estimated national average of 60% - 70% of total animal protein intake. Of the 2013 total fish production, 550,000 metric tons were harvested from freshwater habitats, of which rice field fisheries and small-scale family fisheries contributed approximately 20%. The productivity and value of rice field fisheries to households in rural Cambodia has been highlighted in a number of previous studies. The Fisheries Administration of the Ministry of Agriculture, Forestry and Fisheries plans to increase productivity from rice field fisheries and aquaculture at an annual rate of 15% to maintain supply for a growing population. This report draws mainly on the baseline and monitoring data from the Rice Field Fisheries Enhancement Project (RFFEP) during its implementation between 2012 and 2014. Reference is also made to the Fish on Farms project to highlight the relative contribution of fish from small-scale aquaculture compared to wild-caught fish.