25 resultados para age studies
Resumo:
ENGLISH: Three hundred and twenty-six collections of anchoveta (Cetengraulis mysticetus), an important tuna bait species, taken between April 1951 and April 1960 from seven major baiting areas in the Eastern Tropical Pacific Ocean (Almejas Bay, Guaymas, Ahome Point, Banderas Bay, Gulf of Fonseca, coast of Colombia and Ecuador-Peru) are the basis of this study of age, growth, sexual maturity and spawning. The study of the temporal progression of modal size groups from plots of monthly length-frequency distributions provided estimates of age and rate of growth. The study of sexual maturity and time of spawning was based on gross examination of ovaries, and application of the gonad index. SPANISH: Trescientas veintiseis recolecciones de anchovetas (Cetengraulis mysticetus), una importante especie de carnada para la pesca del atún, cogidas entre abril de 1951 y abril de 1960 en siete de las mayores áreas de pesca de peces de carnada en el Océano Pacífico Oriental Tropical (Bahía de Almejas, Guaymas, Punta Ahome, Bahía Banderas, Golfo de Fonseca, y las costas de Colombia y de Ecuador- Perú), sirven de base a este estudio de la edad, crecimiento, madurez sexual y desove de dicha especie. El estudio de la progresión temporal de los grupos de tamaños modales según los gráficos de las distribuciones de la frecuencia de las longitudes proporcionó estimaciones de la edad y de la tasa de crecimiento. La investigación de la madurez sexual y la época de desove se basó en el examen macroscópico de los ovarios y en la aplicación del índice de gónadas.
Resumo:
The meristic and morphometric characteristics of Gymnarchus niloticus are described and linear equations relating various parts of the body to the head length or total length are given. The age of G. niloticus in Lake Chad (Nigeria) was determined from growth marks on the opercular bones. The mean lengths for age, and mean weights for age obtained for the first five years of life are given. The assymptotic length and the von Betarlanffy growth parameters for the males and females combined are given
Resumo:
English: Food selection of first-feeding yellowfin tuna larvae was studied in the laboratory during October 1992. The larvae were hatched from eggs obtained by natural spawning of yellowfin adults held in sea pens adjacent to Ishigaki Island, Okinawa Prefecture, Japan. The larvae were fed mixed-prey assemblages consisting of size-graded wild zooplankton and cultured rotifers. Yellowfin larvae were found to be selective feeders during the first four days of feeding. Copepod nauplii dominated the diet numerically, by frequency of occurrence and by weight. The relative importance of juvenile and adult copepods (mostly cyclopoids) in the diet increased over the 4-day period. Rotifers, although they comprised 31 to 40 percent of the available forage, comprised less than 2.1 percent of the diet numerically. Prey selection indices were calculated taking into account the relative abundances of prey, the swimming speeds of yellowfin larvae and their prey, and the microscale influence of turbulence on encounter rates. Yellowfin selected for copepod nauplii and against rotifers, and consumed juvenile and adult copepods in proportion to their abundances. Yellowfin larvae may select copepod nauplii and cyclopoid juveniles and adults based on the size and discontinuous swimming motion of these prey. Rotifers may not have been selected because they were larger or because they exhibit a smooth swimming pattern. The best initial diet for the culture of yellowfin larvae may be copepod nauplii and cyclopoid juveniles and adults, due to the size, swimming motion, and nutritional content of these prey. If rotifers alone are fed to yellowfin larvae, the rotifers should be enriched with a nutritional supplement that is high in unsaturated fatty acids. Mouth size of yellowfin larvae increases rapidly within the first few days of feeding, which minimizes limitations on feeding due to prey size. Although yellowfin larvae initiate feeding on relatively small prey, they rapidly acquire the ability to add relatively large, rare prey items to the diet. This mode of feeding may be adaptive for the development of yellowfin larvae, which have high metabolic rates and live in warm mixed-layer habitats of the tropical and subtropical Pacific. Our analysis also indicates a strong potential for the influence of microscale turbulence on the feeding success of yellowfin larvae. --- Experiments designed to validate the periodicity of otolith increments and to examine growth rates of yellowfin tuna larvae were conducted at the Japan Sea-Farming Association’s (JASFA) Yaeyama Experimental Station, Ishigaki Island, Japan, in September 1992. Larvae were reared from eggs spawned by captive yellowfin enclosed in a sea pen in the bay adjacent to Yaeyama Station. Results indicate that the first increment is deposited within 12 hours of hatching in the otoliths of yellowfin larvae, and subsequent growth increments are formed dailyollowing the first 24 hours after hatching r larvae up to 16 days of age. Somatic and otolith gwth ras were examined and compared for yolksac a first-feeding larvae reared at constant water tempatures of 26�and 29°C. Despite the more rapid develo of larvae reared at 29°C, growth rates were nnificaifferent between the two treatments. Howeve to poor survival after the first four days, it was ssible to examine growth rates beyond the onset of first feeding, when growth differences may become more apparent. Somatic and otolith growth were also examined for larvae reared at ambient bay water temperatures during the first 24 days after hatching. timates of laboratory growth rates were come to previously reported values for laboratory-reared yelllarvae of a similar age range, but were lower than growth rates reported for field-collected larvae. The discrepancy between laboratory and field growth rates may be associated with suboptimal growth conditions in the laboratory. Spanish: Durante octubre de 1992 se estudió en el laboratorio la seleccalimento por larvaún aleta amarillmera alimentación. Las larvas provinieron de huevos obtenidosel desove natural de aletas amarillas adultos mantenidos en corrales marinos adyacentes a la Isla Ishigaki, Prefectura de Okinawa (Japón). Se alimentó a las larvas con presas mixtas de zooplancton silvestre clasificado por tamaño y rotíferos cultivados. Se descubrió que las larvas de aleta amarilla se alimentan de forma selectiva durante los cuatro primeros días de alimentación. Los nauplios de copépodo predominaron en la dieta en número, por frecuencia de ocurrencia y por peso. La importancia relativa de copépodos juveniles y adultos (principalmente ciclopoides) en la dieta aumentó en el transcurso del período de 4 días. Los rotíferos, pese a que formaban del 31 al 40% del alimento disponible, respondieron de menos del 2,1% de la dieta en número. Se calcularon índices de selección de presas tomando en cuenta la abundancia relativa de las presas, la velocidad de natación de las larvas de aleta amarilla y de sus presas, y la influencia a microescala de la turbulencia sobre las tasas de encuentro. Los aletas amarillas seleccionaron a favor de nauplios de copépodo y en contra de los rotíferos, y consumieron copépodos juveniles y adultos en proporción a su abundancia. Es posible que las larvas de aleta amarilla seleccionen nauplios de copépodo y ciclopoides juveniles y adultos con base en el tamaño y movimiento de natación discontinuo de estas presas. Es posible que no se hayan seleccionado los rotíferos a raíz de su mayor tamaño o su patrón continuo de natación. Es posible que la mejor dieta inicial para el cultivo de larvas de aleta amarilla sea nauplios de copépodo y ciclopoides juveniles y adultos, debido al tamaño, movimiento de natación, y contenido nutritivo de estas presas. Si se alimenta a las larvas de aleta amarilla con rotíferos solamente, se debería enriquecerlos con un suplemento nutritivo rico en ácidos grasos no saturados. El tamaño de la boca de las larvas de aleta amarilla aumenta rápidamente en los primeros pocos días de alimentación, reduciendo la limitación de la alimentación debida al tamaño de la presa. Pese a que las larvas de aleta amarilla inician su alimentación con presas relativamente pequeñas, se hacen rápidamente capaces de añadir presas relativamente grandes y poco comunes a la dieta. Este modo de alimentación podría ser adaptivo para el desarrollo de larvas de aleta amarilla, que tienen tasa metabólicas altas y viven en hábitats cálidos en la capa de mezcla en el Pacífico tropical y subtropical. Nuestro análisis indica también que la influencia de turbulencia a microescala es potencialmente importante para el éxito de la alimentación de las larvas de aleta amarilla. --- En septiembre de 1992 se realizaron en la Estación Experimental Yaeyama de la Japan Sea- Farming Association (JASFA) en la Isla Ishigaki (Japón) experimentos diseñados para validar la periodicidad de los incrementos en los otolitos y para examinar las tasas de crecimiento de las larvas de atún aleta amarilla. Se criaron las larvas de huevos puestos por aletas amarillas cautivos en un corral marino en la bahía adyacente a la Estación Yaeyama. Los resultados indican que el primer incremento es depositado menos de 12 horas después de la eclosión en los otolitos de las larvas de aleta amarilla, y que los incrementos de crecimiento subsiguientes son formados a diario a partir de las primeras 24 horas después de la eclosión en larvas de hasta 16 días de edad. Se examinaron y compararon las tasas de crecimiento somático y de los otolitos en larvas en las etapas de saco vitelino y de primera alimentación criadas en aguas de temperatura constante entre 26°C y 29°C. A pesar del desarrollo más rápido de las larvas criadas a 29°C, las tasas de crecimiento no fueron significativamente diferentes entre los dos tratamientos. Debido a la mala supervivencia a partir de los cuatro primeros días, no fue posibación, uando las diferencias en el crecimiento podrían hacerse más aparentes. Se examinó también el crecimiento somático y de los otolitos para larvas criadas en temperaturas de agua ambiental en la bahía durante los 24 días inmediatamente después de la eclosión. Nuestras estimaciones de las tasas de crecimiento en el laboratorio fueron comparables a valores reportados previamente para larvas de aleta amarilla de edades similares criadas en el laboratorio, pero más bajas que las tasas de crecimiento reportadas para larvas capturadas en el mar. La discrepancia entre las tasas de crecimiento en el laboratorio y el mar podría estar asociada con condiciones subóptimas de crecimiento en el lab
Resumo:
Samples were collected to study the age and growth of Labeo calbasu (Hamilton) from the river Ghaghra (Guptarghat centre, Faizabad). The scales of L. calbasu have been used for age and growth studies in present paper. Study of the marginal rings on the scales of L. calbasu indicates their annual nature. The fish attained growth in 1st 18.7 cm, 2nd 27.8 cm, 3rd 35.7 cm, 4th 41.8 cm, 5th 46.9 cm, 6th 54.9 cm and 7th 57.4 cm years of the life. The growth rate was observed 18.7, 9.1, 7.9, 6.7, 5.1, 8.0 and 2.5 cm for 1st to 7th age classes respectively. The age groups 1+ to 4+ constituted 91.17% of the total exploited population and 8.83% of remaining age groups (5+ to 7+). The maximum exploited population was observed in 2+ age group with 33.68%. Overall exploitation pattern was systematic and a good indicator for heavy recruitment.
Resumo:
Accurate and precise estimates of age and growth rates are essential parameters in understanding the population dynamics of fishes. Some of the more sophisticated stock assessment models, such as virtual population analysis, require age and growth information to partition catch data by age. Stock assessment efforts by regulatory agencies are usually directed at specific fisheries which are being heavily exploited and are suspected of being overfished. Interest in stock assessment of some of the oceanic pelagic fishes (tunas, billfishes, and sharks) has developed only over the last decade, during which exploitation has increased steadily in response to increases in worldwide demand for these resources. Traditionally, estimating the age of fishes has been done by enumerating growth bands on skeletal hardparts, through length frequency analysis, tag and recapture studies, and raising fish in enclosures. However, problems related to determining the age of some of the oceanic pelagic fishes are unique compared with other species. For example, sampling is difficult for these large, highly mobile fishes because of their size, extensive distributions throughout the world's oceans, and for some, such as the marlins, infrequent catches. In addition, movements of oceanic pelagic fishes often transect temperate as well as tropical oceans, making interpretation of growth bands on skeletal hardparts more difficult than with more sedentary temperate species. Many oceanic pelagics are also long-lived, attaining ages in excess of 30 yr, and more often than not, their life cycles do not lend themselves easily to artificial propagation and culture. These factors contribute to the difficulty of determining ages and are generally characteristic of this group-the tunas, billfishes, and sharks. Accordingly, the rapidly growing international concern in managing oceanic pelagic fishes, as well as unique difficulties in ageing these species, prompted us to hold this workshop. Our two major objectives for this workshop are to: I) Encourage the interchange of ideas on this subject, and 2) establish the "state of the art." A total of 65 scientists from 10 states in the continental United States and Hawaii, three provinces in Canada, France, Republic of Senegal, Spain, Mexico, Ivory Coast, and New South Wales (Australia) attended the workshop held at the Southeast Fisheries Center, Miami, Fla., 15-18 February 1982. Our first objective, encouraging the interchange of ideas, is well illustrated in the summaries of the Round Table Discussions and in the Glossary, which defines terms used in this volume. The majority of the workshop participants agreed that the lack of validation of age estimates and the means to accomplish the same are serious problems preventing advancements in assessing the age and growth of fishes, particularly oceanic pelagics. The alternatives relating to the validation problem were exhaustively reviewed during the Round Table Discussions and are a major highlight of this workshop. How well we accomplished our second objective, to establish the "state of the art" on age determination of oceanic pelagic fishes, will probably best be judged on the basis of these proceedings and whether future research efforts are directed at the problem areas we have identified. In order to produce high-quality papers, workshop participants served as referees for the manuscripts published in this volume. Several papers given orally at the workshop, and included in these proceedings, were summarized from full-length manuscripts, which have been submitted to or published in other scientific outlets-these papers are designated as SUMMARY PAPERS. In addition, the SUMMARY PAPER designation was also assigned to workshop papers that represented very preliminary or initial stages of research, cursory progress reports, papers that were data shy, or provide only brief reviews on general topics. Bilingual abstracts were included for all papers that required translation. We gratefully acknowledge the support of everyone involved in this workshop. Funding was provided by the Southeast Fisheries Center, and Jack C. Javech did the scientific illustrations appearing on the cover, between major sections, and in the Glossary. (PDF file contains 228 pages.)
Resumo:
ENGLISH: Knowledge of the size and age at maturity, spawning seasons, and spawning areas of the tropical tunas supporting the fishery in the Eastern Pacific is an important part of the basic information required for understanding their life history, population structure, and fishery dynamics. Until a few years ago nothing was known of these matters. In 1947 the senior author and one of his colleagues (Schaefer and Marr 1948, Schaefer 1948) were able to demonstrate that both yellowfin tuna and skipjack spawn offshore from Central America at least during the late winter and spring months. During January to April many yellowfin tuna over about 70 cm. total length in commercial catches from that region were found to have gonads in advanced stages of maturity, and specimens caught during late June were found to be spent. Maturing skipjack were collected in late February, and spawned-out fish were observed in late March. Numerous very young juveniles of the yellowfin, down to 10 mm. in length, and two very young juvenile skipjack, were captured in this area between January and May. SPANISH: El conocimiento del tamaño y la edad que corresponden a la primera madurez sexual, así como de las estaciones y áreas de desove de los atunes tropicales que mantienen las pesquerías del Pacífico Oriental, constituyen parte importante de la información que es menester para comprender la historia natural, la estructura de la población y la dinámica de la pesquería. Hasta hace pocos años nada se sabía sobre el particular. En 1947 el autor principal y uno de sus colegas (Schaefer y Marr, 1948; Schaefer, 1948) pudieron demostrar que tanto el atún aleta amarilla como el barrilete desovan en el mar abierto, frente a América Central, por lo menos durante la última parte del invierno y en la primavera. De enero a abril encontraron que muchos de los atunes aleta amarilla de más de 70 cm. de longitud total, procedentes de las pescas comerciales de dicha región; tenían gónadas en avanzados estados de madurez, mientras que ejemplares pescados hacia fines de junio ya habían desovado. Se recolectaron barriletes en vías de maduración a fines de febrero, al paso que en los últimos días de marzo se encontraron especímenes que ya habían desovado. Numerosos ejemplares muy juveniles del atún aleta amarilla, tan pequeños como 10 mm., y dos barriletes también muy juveniles, fueron pescados en esta región entre enero y mayo. (PDF contains 65 pages.)
Resumo:
ENGLISH: Crew members of tuna clippers and Commission personnel are collecting specimens of anchovetas (Cetengraulis mysticetus) for studies of the biology of this important tuna-bait species. More than 27,000 fish from 231 collections captured in the Gulf of Panama between June 1951 and January 1956 are the basis of this study of the age, growth, sexual maturity, and spawning season of this species in that area. Estimates of age and rate of growth were made by studying the temporal progression of modal size groups from monthly length frequency distributions. Sexual development and time of spawning were determined from gross examination of ovaries and measurements of ovarian eggs. SPANISH: Con el fin de estudiar la biología de la anchoveta (Cetengraulis mysticetus) los tripulantes de los barcos atuneros y el personal de la Comisión están recolectando especimenes de esta importante especie de carnada para capturar el atún. Mas de 27,000 ejemplares de las 231 colecciones hechas en el Golfo de Panamá entre junio de 1951 y enero de 1956, sirven de material al presente estudio sobre la edad, el crecimiento, la madurez sexual y las épocas de desove de esta especie en el área indicada. Las estimaciones de la edad y de la proporción del crecimiento fueron hechas a base del estudio de la progresión temporal de los grupos modales de tamaño en las distribuciones mensuales de frecuencias de longitud. El desarrollo sexual y el periodo de desove fueron determinados mediante el examen microscópico de los ovarios y las mediciones de los huevos ováricos. (PDF contains 79 pages.)
Resumo:
ENGLISH: Length-frequency samples of anchovetas were collected from January 1956 to March 1963. The findings for the most part corroborate those of previous studies in regard to the general pattern of age and growth. Recent tag returns demonstrate that some of the fish survive at least to the beginning of their fourth year of life. In 1961 and 1962 the fish were considerably larger than in any previous year for which data are available. The annual variation in the size of the young of the year is apparently related to the amount of upwelling and the density of the population during the early months of the year. SPANISH: De enero de 1956 a marzo de 1963 se recolectaron muestras de las frecuencias de longitud de las anchovetas. Las investigaciones, en su mayor parte, corraboran los resultados de los estudios anteriores referentes a los patrones generales de la edad y el crecimiento. Recobros recientes de mareas demuestran que algunos de los peces sobreviven por lo menos hasta el comienzo de su cuarto año de vida. En 1961 y 1962 los peces fueron considerablemente más grandes que en cualquiera de los años anteriores de los que se tienen datos disponibles. La variación anual en el tamaño de los peces jóvenes del año está aparentemente relacionada con el volumen del afloramiento y la densidad de la población durante los primeros meses del año. (PDF contains 51 pages)
Resumo:
Biological studies of Heterotis niloticus were conducted for three years in the middle River Niger. Scales were found to be the most suitable structure in ageing Heterotis which was validated by length/histogram curve. Annual rings were found to be formed between March to June. Growth was rapid in the first two years and they reached sexual maturity at 2 years. The male grow longer while the female are bulkier. The length-weight relationship of male and female Heterotis did not differ significantly and the resulting equation for male was W = 1.25L super(2.5) and W = 1.6L super(2.7) for females respectively where W = weight (g) and L = total length. The total length to body scale relationship was found to be L = 14.3R super(2.6) where (R = oral radius of scale Heterotis growth was found to be allometric
Age validation of great hammerhead shark (Sphyrna mokarran), determined by bomb radiocarbon analysis
Resumo:
Preliminary validation of annual growth band deposition in vertebrae of great hammerhead shark (Sphyrna mokarran) was conducted by using bomb radiocarbon analysis. Adult specimens (n=2) were collected and thin sections of vertebral centra were removed for visual aging and use in radiocarbon assays. Vertebral band counts were used to estimate age, and year of formation was assigned to each growth band by subtracting estimated age from the year of capture. A total of 10 samples were extracted from growth bands and analyzed for Δ14C. Calculated Δ14C values from dated bands were compared to known-age reference chronologies, and the resulting patterns indicated annual periodicity of growth bands up to a minimum age of 42 years. Trends in Δ14C across time in individual specimens indicated that vertebral radiocarbon is conserved through time but that habitat and diet may inf luence Δ14C levels in elasmobranchs. Although the age validation reported here must be considered preliminary because of the small sample size and narrow age range of individuals sampled, it represents the first confirmation of age in S. mokarran, further illustrating the usefulness of bomb radiocarbon analysis as a tool for life history studies in elasmobranchs.
Resumo:
Ten growth models were fitted to age and growth data for spiny dogfish (Squalus acanthias) in the Gulf of Alaska. Previous studies of spiny dogfish growth have all fitted the t0 formulation of the von Bertalanffy model without examination of alternative models. Among the alternatives, we present a new two-phase von Bertalanffy growth model formulation with a logistically scaled k parameter and which estimates L0. A total of 1602 dogfish were aged from opportunistic collections with longline, rod and reel, set net, and trawling gear in the eastern and central Gulf of Alaska between 2004 and 2007. Ages were estimated from the median band count of three independent readings of the second dorsal spine plus the estimated number of worn bands for worn spines. Owing to a lack of small dogfish in the samples, lengths at age of small individuals were back-calculated from a subsample of 153 dogfish with unworn spines. The von Bertalanffy, two-parameter von Bertalanffy, two-phase von Bertalanffy, Gompertz, two-parameter Gompertz, and logistic models were fitted to length-at-age data for each sex separately, both with and without back-calculated lengths at age. The two-phase von Bertalanffy growth model produced the statistically best fit for both sexes of Gulf of Alaska spiny dogfish, resulting in L∞ = 87.2 and 102.5 cm and k= 0.106 and 0.058 for males and females, respectively.
Resumo:
Age, growth, and reproductive data were obtained from dolphinfish (Coryphaena hippurus, size range: 89 to 1451 mm fork length [FL]) collected between May 2002 and May 2004 off North Carolina. Annual increments from scales (n=541) and daily increments from sagittal otoliths (n=107) were examined; estimated von Bertalanffy parameters were L∞ (asymptotic length)=1299 mm FL and k (growth coefficient)=1.08/yr. Daily growth increments reduced much of the residual error in length-at-age estimates for age-0 dolphinfish; the estimated average growth rate was 3.78 mm/day during the first six months. Size at 50% maturity was slightly smaller for female (460 mm FL) than male (475 mm FL) dolphinfish. Based on monthly length-adjusted gonad weights, peak spawning occurs from April through July off North Carolina; back-calculated hatching dates from age-0 dolphinfish and prior reproductive studies on the east coast of Florida indicate that dolphinfish spawning occurs year round off the U.S. east coast and highest levels range from January through June. No major changes in length-at-age or size-at-maturity have occurred since the early 1960s, even after substantial increases in fishery landings.
Resumo:
The sagittal otoliths of Lates niloticus, Haplochromis obesus, and Oreochromis niloticus from Lake Victoria were examined for daily growth rings using scanning electron microscopy. In the three species the increments were clear and thick enough to allow future studies with light microscopy. The daily nature of the increments seems supported by the rhythmic growth that were found.
Resumo:
The northwest Atlantic population of thorny skates (Amblyraja radiata) inhabits an area that ranges from Greenland and Hudson Bay, Canada, to South Carolina. Despite such a wide range, very little is known about most aspects of the biology of this species. Recent stock assessment studies in the northeast United States indicate that the biomass of the thorny skate is below the threshold levels mandated by the Sustainable Fisheries Act. In order to gain insight into the life history of this skate, we estimated age and growth for thorny skates, using vertebral band counts from 224 individuals ranging in size from 29 to 105 cm total length (TL). Age bias plots and the coefficient of variation indicated that our aging method represents a nonbiased and precise approach for the age assessment of A. radiata. Marginal increments were significantly different between months (Kruskal-Wallis P<0.001); a distinct trend of increasing monthly increment growth began in August. Age-at-length data were used to determine the von Bertalanffy growth parameters for this population: L∞ = 127 cm (TL) and k= 0.11 for males; L∞ = 120 cm (TL) and k= 0.13 for females. The oldest age estimates obtained for the thorny skate were 16 years for both males and females, which corresponded to total lengths of 103 cm and 105 cm, respectively.