2 resultados para age studies

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents composition measurements for atmospherically relevant inorganic and organic aerosol from laboratory and ambient measurements using the Aerodyne aerosol mass spectrometer. Studies include the oxidation of dodecane in the Caltech environmental chambers, and several aircraft- and ground-based field studies, which include the quantification of wildfire emissions off the coast of California, and Los Angeles urban emissions.

The oxidation of dodecane by OH under low NO conditions and the formation of secondary organic aerosol (SOA) was explored using a gas-phase chemical model, gas-phase CIMS measurements, and high molecular weight ion traces from particle- phase HR-TOF-AMS mass spectra. The combination of these measurements support the hypothesis that particle-phase chemistry leading to peroxyhemiacetal formation is important. Positive matrix factorization (PMF) was applied to the AMS mass spectra which revealed three factors representing a combination of gas-particle partitioning, chemical conversion in the aerosol, and wall deposition.

Airborne measurements of biomass burning emissions from a chaparral fire on the central Californian coast were carried out in November 2009. Physical and chemical changes were reported for smoke ages 0 – 4 h old. CO2 normalized ammonium, nitrate, and sulfate increased, whereas the normalized OA decreased sharply in the first 1.5 - 2 h, and then slowly increased for the remaining 2 h (net decrease in normalized OA). Comparison to wildfire samples from the Yucatan revealed that factors such as relative humidity, incident UV radiation, age of smoke, and concentration of emissions are important for wildfire evolution.

Ground-based aerosol composition is reported for Pasadena, CA during the summer of 2009. The OA component, which dominated the submicron aerosol mass, was deconvolved into hydrocarbon-like organic aerosol (HOA), semi-volatile oxidized organic aerosol (SVOOA), and low-volatility oxidized organic aerosol (LVOOA). The HOA/OA was only 0.08–0.23, indicating that most of Pasadena OA in the summer months is dominated by oxidized OA resulting from transported emissions that have undergone photochemistry and/or moisture-influenced processing, as apposed to only primary organic aerosol emissions. Airborne measurements and model predictions of aerosol composition are reported for the 2010 CalNex field campaign.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation is divided into three parts.

The first section is concerned with protein synthesis in cellfree systems from reticulocytes. The sub-cellular reticulocyte fractions, reagents, etc. have been examined for the presence of traces of ribonuclease, using. an assay based upon the loss of infectivity of RNA fran bacteriophage MS2. This assay is sensitive to 5 x 10-7 γ RNase/ml. In addition, the loss of synthetic capacity of an 80S ribosome on dissociation has been studied, and can be attributed to loss of messenger RNA when the monomer is separated into subunits. The presence of ribonuclease has been shown to be a major cause of polyribosome disintegration during cell-free protein synthesis.

The second section concerns the changes in ribosomes and polyribosomes which occur during the maturation of a reticulocyte into an erythrocyte. With increasing age, the cells lose a large proportion of the ribonucleoprotein, but the percentage of ribosomes present as polyribosomes is only slightly altered. The loss of hemoglobin synthesis on maturation is probably due to both the loss of total ribosomes and to the lessened specific activity of the polyribosomes.

The third section contains analytical ultracentrifugation data on 80S ribosomes, polyribosomes, and ribosomal RNA from reticulocytes. The 60s and 40s subunits, obtained by dissociation of the 80s particle with inorganic pyrophosphate, were also studied. The RNA from reticulocyte ribosomes has been examined under a variety of denaturing conditions, including dimethyl sulfoxide treatment, formaldehyde reaction and thermal denaturation. From these studies we can conclude that the 28S and 16S RNA's are single polynucleotide chains and are not made up of smaller RNA subunits hydrogen-bonded together.