37 resultados para Plants in winter
Resumo:
(PDF has 125 pages.)
Resumo:
A review article which discusses the ecology and management of common water plants in lowland streams, with an introduction containing a review of previous studies on the subject. The article covers the significance of seasonal growth, the significance of stand structure (particularly in relation to hydraulic resistence), an assessment of current river management, improvements to plant management techniques (in relation to cutting), and alternatives to the traditional techniques of river plant management. There are a number of accompanying figures.
Resumo:
Serial, cyclonic, mesoscale eddies arise just north of the Charleston Bump, a topographical rise on the continental slope and Blake Plateau, and characterize the U.S. outer shelf and upper slope in the region of the Charleston Gyre. This region was transected during the winters of 2000, 2001, and 2002, and hydrographic data and larval fishes were collected. The hydrodynamics of the cyclonic eddies of the Charleston Gyre shape the distribution of larval fishes by mixing larvae from the outer continental shelf and the Gulf Stream and entraining them into the eddy circulation at the peripheral margins, the wrap-around filaments. Over all years and transects (those that intercepted eddies and those that did not), chlorophyll a concentrations, zooplankton displacement volumes, and larval fish concentrations were positively correlated. Chlorophyll a concentrations were highest in filaments that wrapped around eddies, and zooplankton displacement volumes were highest in the continental shelf–Gulf Stream–frontal mix. Overall, the concentration of all larval fishes declined from inshore to offshore with highest concentrations occurring over the outer shelf. Collections produced larvae from 91 fish families representing continental shelf and oceanic species. The larvae of shelf-spawned fishes—Atlantic Menhaden Brevoortia tyrannus, Round Herring Etrumeus teres, Spot Leiostomus xanthurus, and Atlantic Croaker Micropogonias undulatus—were most concentrated over the outer shelf and in the continental shelf–Gulf Stream–frontal mix. The larvae of ocean-spawned fishes—lanternfishes, bristlemouths, and lightfishes—were more evenly dispersed in low concentrations across the outer shelf and upper slope, the highest typically in the Gulf Stream and Sargasso Sea, except for lightfishes that were highest in the continental shelf–Gulf Stream–frontal mix. Detrended correspondence analysis rendered groups of larval fishes that corresponded with a gradient between the continental shelf and Gulf Stream and Sargasso Sea. Eddies propagate northeastward with a residence time on the outer shelf and upper slope of ∼1 month, the same duration as the larval period of most fishes. The pelagic habitat afforded by eddies and fronts of the Charleston Gyre region can be exploited as nursery areas for feeding and growth of larval fishes within the southeastern Atlantic continental shelf ecosystem of the U.S. Eddies, and the nursery habitat they provide, translocate larvae northeastward.
Resumo:
The extent of idle capacity in fish processing (freezing) plants estimated by stratified random sampling is reported. The estimates for 1978 and 1979 for the processing plants on the west coast of India were 76.9 % and 73.2 % respectively at the rate of 250 working days per annum and two shifts per day. The percentage error of estimates worked out to 6.04 for 1978 and 6.98 for 1979. Substantial under utilization of processing plants noticed in all the states accounts mainly to the non-availability of raw material (prawn), high cost of production and shortage of power.
Resumo:
The extent of idle capacity in the fish processing (freezing) plants in the east coast of India estimated by stratified random sampling and the factors responsible for the same are reported. The estimates of idle capacity of fish processing plants in the east coast for the years 1978 and 1979 were respectively 75.9% and 72.5% on the basis of 250 working days per annum and double shift per day. The percentage errors of estimates worked out to 6.9 for 1978 and 4.7 for 1979. The corresponding figures were worked out on the basis of 200 working days also. Substantial under-utilisation of plants in all the maritime states in the east coast accounted mainly to non-availability of raw material, high cost of production, shortage of power, scarcity of ice and potable water during peak season and frequent labour troubles.
Resumo:
King mackerel (Scomberomorus cavalla) are ecologically and economically important scombrids that inhabit U.S. waters of the Gulf of Mexico (GOM) and Atlantic Ocean (Atlantic). Separate migratory groups, or stocks, migrate from eastern GOM and southeastern U.S. Atlantic to south Florida waters where the stocks mix during winter. Currently, all winter landings from a management-defined south Florida mixing zone are attributed to the GOM stock. In this study, the stock composition of winter landings across three south Florida sampling zones was estimated by using stock-specific otolith morphological variables and Fourier harmonics. The mean accuracies of the jackknifed classifications from stepwise linear discriminant function analysis of otolith shape variables ranged from 66−76% for sex-specific models. Estimates of the contribution of the Atlantic stock to winter landings, derived from maximum likelihood stock mixing models, indicated the contribution was highest off southeastern Florida (as high as 82.8% for females in winter 2001−02) and lowest off southwestern Florida (as low as 14.5% for females in winter 2002−03). Overall, results provided evidence that the Atlantic stock contributes a certain, and perhaps a significant (i.e., ≥50%), percentage of landings taken in the management-defined winter mixing zone off south Florida, and the practice of assigning all winter mixing zone landings to the GOM stock should
Resumo:
The need to estimate percentages and/or numbers occurs frequently during practical research work; accurate but rapid estimates can be useful when planning research programmes. Charts are provided that may be used as a visual aid to estimating numbers of animals/plants in a specific situation, for example, the number of fish fry in a subsample from a hatchery tank, or the percentage composition of a sample such as the percentage algal cover in a pond.
Resumo:
Stolon formation and fragmentation are two vegetative mechanisms by which hydrilla colonies expand. These two mechanisms of spread were studied in ponds located in Lewisville, TX over a two-year period. Stolons were determined to be the predominant mechanism for localized expansion in undisturbed areas. While some fragments were produced, they accounted for only 0.1% of the establishment of rooted plants in new quadrats. Peak production of fragments occurred in October and November, with fragment densities of 0.15 N m-2 d-1. Expansion by stolons occurred between June and November of each year, with higher rates of spread (up to 4.0 cm d-1 radial growth) observed in the second season.
Resumo:
exhaustive biological survey of the Panama Canal Zone-will be undertaken in the winter of 1910-11. A part of the fresh-water streams of the Isthmus of Panama empty into the Atlantic Ocean and others into the Pacific Ocean. It is known that a certain number of animals and plants in the streams on the Atlantic side are different from those of the Pacific side, but as no exact biological survey has ever been undertaken the extent and magnitude of these differences have yet to be learned. When the canal is completed the organisms of the various watersheds will be offered a ready means of mingling together, the natural distinctions now existing will be obliterated....
Resumo:
Executive Summary: Observations show that warming of the climate is unequivocal. The global warming observed over the past 50 years is due primarily to human-induced emissions of heat-trapping gases. These emissions come mainly from the burning of fossil fuels (coal, oil, and gas), with important contributions from the clearing of forests, agricultural practices, and other activities. Warming over this century is projected to be considerably greater than over the last century. The global average temperature since 1900 has risen by about 1.5ºF. By 2100, it is projected to rise another 2 to 11.5ºF. The U.S. average temperature has risen by a comparable amount and is very likely to rise more than the global average over this century, with some variation from place to place. Several factors will determine future temperature increases. Increases at the lower end of this range are more likely if global heat-trapping gas emissions are cut substantially. If emissions continue to rise at or near current rates, temperature increases are more likely to be near the upper end of the range. Volcanic eruptions or other natural variations could temporarily counteract some of the human-induced warming, slowing the rise in global temperature, but these effects would only last a few years. Reducing emissions of carbon dioxide would lessen warming over this century and beyond. Sizable early cuts in emissions would significantly reduce the pace and the overall amount of climate change. Earlier cuts in emissions would have a greater effect in reducing climate change than comparable reductions made later. In addition, reducing emissions of some shorter-lived heat-trapping gases, such as methane, and some types of particles, such as soot, would begin to reduce warming within weeks to decades. Climate-related changes have already been observed globally and in the United States. These include increases in air and water temperatures, reduced frost days, increased frequency and intensity of heavy downpours, a rise in sea level, and reduced snow cover, glaciers, permafrost, and sea ice. A longer ice-free period on lakes and rivers, lengthening of the growing season, and increased water vapor in the atmosphere have also been observed. Over the past 30 years, temperatures have risen faster in winter than in any other season, with average winter temperatures in the Midwest and northern Great Plains increasing more than 7ºF. Some of the changes have been faster than previous assessments had suggested. These climate-related changes are expected to continue while new ones develop. Likely future changes for the United States and surrounding coastal waters include more intense hurricanes with related increases in wind, rain, and storm surges (but not necessarily an increase in the number of these storms that make landfall), as well as drier conditions in the Southwest and Caribbean. These changes will affect human health, water supply, agriculture, coastal areas, and many other aspects of society and the natural environment. This report synthesizes information from a wide variety of scientific assessments (see page 7) and recently published research to summarize what is known about the observed and projected consequences of climate change on the United States. It combines analysis of impacts on various sectors such as energy, water, and transportation at the national level with an assessment of key impacts on specific regions of the United States. For example, sea-level rise will increase risks of erosion, storm surge damage, and flooding for coastal communities, especially in the Southeast and parts of Alaska. Reduced snowpack and earlier snow melt will alter the timing and amount of water supplies, posing significant challenges for water resource management in the West. (PDF contains 196 pages)
Resumo:
Ichthyofauna of the coastal «10 m depth) habitat of the South Atlantic Bight were investigated between Cape Fear, North Carolina, and the St. John's River, Florida. Trawl collections from four nonconsecutive seasons in the period July 1980 to December 1982 indicated that the fish community is dominated by the family Sciaenidae, particularly juvenile forms. Spot (Leiostomus xanthurus) and Atlantic croaker (Micropogonias undulatus) were the two most abundant species and dominated catches during all seasons. Atlantic menhaden (Brevoortin tyrannus) was also very abundant, but only seasonally (winter and spring) dominant in the catches. Elasmobranch fIShes, especially rajiforms and carcharinids, contributed to much of the biomass of fishes collected. Total fish abundance was greatest in winter and lowest in summer and was influenced by the seasonality of Atlantic menhaden and Atlantic croaker in the catches. Biomass was highest in spring and lowest in summer, and was influenced by biomass of spot. Fish density ranged from 321 individuals and 12.2 kg per hectare to 746 individuals and 25.2 kg per hectare. Most species ranged widely throughout the bight, and showed some evidence of seasonal migration. Species assemblages were dominated by ubiquitous year-round residents of the coastal waters of the bight. Diversity (H') was highest in summer, and appeared influenced by the evenness of distribution of individuals among species. (PDF file contains 56 pages.)
Resumo:
The trends of malformation prevalence in embryos of dab, Limanda limanda, in the southern North Sea after the year 1990 mirrored the drop in major pollutants in the rivers draining into the German Bight. Despite this general decline we detected a pollution event in the southern North Sea in winter 1995/1996 employing the prevalence of malformations in dab embryos as an indicator. An abrupt rise in malformation prevalence in the embryos of dab, corresponded to a dramatic increase in DDT levels in parent fish from the same area, indicating a hitherto unnoticed introduction of considerable quantities of DDT into the system. This input could be traced back to discharges of unknown origen into the River Elbe.
Resumo:
Aquatic vegetation is an essential component of the aquatic ecosystem with both positive and negative implications on the water body. Efforts are always made to curtail the excessive growth of aquatic plants in order to prevent them from becoming a nuisance in the ecosystem. One of the ways of solving such problem is the positive economic use of such plants. Utilization as a method of weed control within the aquatic ecosystem is considered to be one of the safest methods of weed control as this provides the riparian communities double advantages in terms of save environment and personal benefits of the plant. The flora diversity of freshwater and brackish environments posses a great potential to both man and higher animals alike. Due to this fact, this paper attempt to review the exploited and unexploited aquatic plants resources of many of our water bodies in Nigeria both economica/ly and socially, to the populace. Recommendations are also advanced for further studies that will enhance sound management of the resources for maximum benefits and sustainability
Resumo:
The distribution was studied by analysing the catches during four research vessel cruises in summer and eight cruises in winter in the period 1985 - 1993. The emmigration of young saithe, spending the larval and first juvenil stages in the inshore waters of Norway and Scotland, starts during the summer in an age of two years.