55 resultados para Physical-chemical variables
Resumo:
An article reviewing the work undertaken looking at the seasonal variation of chemical conditions in water at various depths in lakes. The laboratory tests undertaken for the research is outlined, as well as details of the sampling locations and the staff involved with the work. One figure shows the seasonal variation in the amounts of dissolved substances in the surface water of Windermere during 1936. Another figure shows seasonal varation inthe dry weight of phyto- and zooplankton in Windermere. Seasonal changes are discussed further and a table is included showing chemical conditions in winter and summer for Windermere.
Resumo:
ENGLISH: The tendency of the tunas, especially the yellowfin (Neothunnus macropterus) to be more abundant in the near vicinity of islands and seamounts, or "banks", than in the surrounding oceanic areas, is well known to commercial fishermen. This has been confirmed by statistical analysis of fishing vessel logbook records, which demonstrates that the catch-per-day's-fishing is, indeed, higher in the near vicinity of these features. It is hypothesized that islands and seamounts cause changes in the physical circulation or the biochemical cycle resulting in greater supplies of food for tunas in their immediate environs. In order to examine this hypothesis, and in order to study possible mechanisms involved, the "Island Current Survey" was undertaken from 8 May to 12 June, 1957, under the joint auspices of the Inter-American Tropical Tuna Commission and the Scripps Institution of Oceanography. Surveys of varying nature and extent were made from M/V Spencer F. Baird near Alijos Rocks, Clarion Island, Shimada Bank and Socorro Island (Figure 1). These studies sought to provide knowledge of the action of islands and seamounts in arresting, stalling or deflecting the mean current past them, in establishing convergence and divergence in the surface flow, in producing vertical motion (mixing and upwelling), and in influencing the primary production and the standing crops of phytoplankton and zooplankton. Each survey is discussed below in detail. Observations made at a front on 10 June will be discussed in another paper. SPANISH: Los pescadores que realizan la pesca comercial conocen muy bien la tendencia de los atunes, en particular del atún aleta amarilla (Neothunnus macropterus), de presentarse en mayor abundancia en las cercanías inmediatas a las islas y cimas submarinas, o "bancos", que en las áreas oceánicas circundantes. Este hecho ha sido confirmado par el análisis estadístico de los registros de los cuadernos de bitácora de las embarcaciones pesqueras, demostrándose que la captura par dias de pesca es, en efecto, más abundante en la inmediata proximidad de tales formaciones. Hipotéticamente se admite que las islas y las cimas submarinas provocan cambios en la circulación física o en el ciclo bioquímico, lo cual se pone de manifiesto a través de un mejor abastecimiento de alimento para los atunes en sus cercanías inmediatas. Con la finalidad de verificar esta hipótesis y de estudiar los mecanismos que ella involucra, se realizó la “Island Current Survey” del 8 de mayo al 12 de junio de 1957, bajo los auspicios de la Comisión Interamericana del Atún Tropical y de la Institución Scripps de Oceanografia. Con el barco Spencer F. Baird se hicieron observaciones de distintas clases y alcances cerca de las Rocas Alijos, la Isla Clarion, el Banco Shimada y la Isla Socorro (Figura 1). Estos estudios tuvieron por objeto adquirir conocimientos sobre la acción que ejercen las islas y cimas submarinas sobre la corriente promedio, ya sea deteniéndola, reduciendo su velocidad o desviando su curso, así como estableciendo convergencia o divergencia en su flujo de superficie, o provocando un movimiento vertical (mezcla y afloramiento) e influyendo en la producción primaria y en las existencias de fitoplancton y zooplancton. Cada operación será tratada a continuación por separado. Las observaciones hechas el dia 10 de junio sobre un frente serán objeto de otra publicación.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Twenty-three years of physical, chemical, and biological data were used to characterize conditions associated with wet, normal, dry, and critical water year types in the upper San Francisco Bay estuary.
Resumo:
The study was conducted between 1998 and 1999. Physical, chemical and biological factors of the water quality characteristics were collected and analysed
Resumo:
The physical-chemical characteristics of any aquatic ecosystem include pH, conductivity, and temperature, water transparency, nutrient and the chlorophyll-a levels. Physical and chemical factors of any ecosystem determine the type and quality of flora present in it and these forms the basis on which the system operates. The elements required in largest amounts for plant productions are carbon, phosphorus, nitrogen, and silicon, which is important for diatoms as a major component of the cell wall. Nutrients may limit algal productivity in the tropics despite the high temperature there allowing rapid nutrient recycling. Nutrients most likely to be limiting African lakes are nitrogen (Talling & Talling 1965; Moss 1969; Lehman & Branstrator 1993, 1994) and phosphorus (Melack.et al l982; Kalff 1983) while silicon may limit diatom growth (Hecky & Kilham 1988). The objective of the study is to investigate the impact of physical-chemical characteristics on the distribution and abundance of organisms in the major aquatic ecosystems.
Resumo:
A literature review of 50 titles including nearly all relevant publications ensures adequate basis on the present level of knowledge. The proposal includes (a) the determination of the biozoenosis and selected environmental factors, and (b) of fishery and stock data of the main fish and shellfish species. The ecological research studies physical and chemical variables of the estuarine waters (flow velocity and direction, water temperature, conductivity, pH, dissolved oxygen, salinity, nutrients such as ammonium, nitrite, phosphate, silicate, pollutants such as hybrocarbons, pesticides and heavy metals, biochemical oxygen demand, chemical oxygen demand), plankton (bacterio-phyto-and zooplankton), benthos, sediment. The fishery biological and fishery investigations include: number of villages and fishermen, number of boats and gears by type, length and weight data of the main fishery objects with concentration on the shrimps, species and numbers of fish parasites. The ecological variables were monitored at fixed stations on sections in the Cross-River Estuary, Calabar and Great Kwara Rivers two times per month during spring and neap tides. The fishery biological and fishery variables were obtained during spring and neap tide too. For the determination of the detailed methodology the ecological and fishery part of the progeamme should be started with frame surveys based on a larger number of stations. These frame surveys should be repeated from time to time. Both parts of the programme are based on three years duration. It seems already appropriate to continue the work with selected representative stations, villages and variables in form of a long-term data chain
Resumo:
This study looks at the distribution and magnitude of acidification and eutrophication in south-east England where there are no natural lakes but a large number of shallow artificial ponds. The study area is defined as the region lying within a 100 km radius of central London but excluding the area within the M25 motorway. Water samples were taken from 120 sites between mid-January and the end of February 1990, with a subsequent monthly survey of a subset of 31 of these waters. Twelve chemical variables were measured in the laboratory using standard techniques. PH values for the full dataset ranged from 3.2 to 8.4, although the majority of sites had pH values in the range 7.0 to 8.5; only five sites had a pH of less than 6.0. The five low pH sites expectedly had low alkalinities and are the only sites with values below 0.1 meq per litre. Concentrations of calcium, sodium, potassium, magnesium, chloride, sulphate and nitrate had normal distributions. The majority of sites had total phosphorus concentrations in the range 25 to 200 mu g per litre, although 10 sites had concentrations above 400 mu g per litre. The low number of acid sites suggests that surface water acidity is not a widespread regional problem in south-east England. However the survey shows that a large number of standing waters in the region have high total phosphorus and nitrate concentrations, and 89% may be considered moderately to considerably eutrophic.
Resumo:
Principal coordinates analysis and multiple regression analysis were used to determine the environmental factors associated with the decline in phytoplankton production during and after the 1977 drought for the San Francisco Bay-Delta Estuary. Physical, chemical and biological data were collected semimonthly or monthly during the spring-summer between 1973 and 1982 from 15 sampling sites located throughout the Bay-Delta. A decline in phytoplankton community diversity and density during the 1977 drought and subsequent years (1978 through 1981) was described using principal coordinates analysis. The best multiple regression which described the changes in phytoplankton community succession contained the variables water temperature, wind velocity and ortho-phosphate concentration. Together these variables accounted for 61 percent of the variation in the phytoplankton community among years described by principal coordinates analysis. An increase in water temperature, wind velocity and ortho-phosphate concentration within the Bay-Delta, beginning in June 1976 and continuing through 1981, was demonstrated using weighted moving averages. From the strong association between phytoplankton community succession and climatic variables it was hypothesized that the decline in phytoplankton production during and after the 1977 drought was associated with climatic changes within the northeast Pacific.
Resumo:
It is generally observed that a variety of physical and chemical variables have considerable impact on the biological life in a mountain river which include plankton, benthic algae, benthic invertebrate and finally the fishery resources. They are often subjected to extreme hydrological disturbances particularly during rainy seasons when increased volume of water create 'Wash Off' situation for existing fauna and flora. A case study of a lesser Himalayan river - the Gaula, which drains the south-central part of Kumaon region in Uttaranchal is presented here. Since this river does not get snow-melt water, it mainly depends on steady flow of the groundwater round the year. The climate of the area is characterized with long winters, short summer and good amount of rain during monsoon months. The infiltrated groundwater which seeps into the surface soil layers during monsoon seasons is the chief source of discharge of water during winter and summer season
Resumo:
Table of Contents [pdf, 0.09 Mb] Section I - Presentations and Discussions at Plenary Sessions Introduction and Overview of Workshop Objectives [pdf, 0.07 Mb] Plenary Session Presentations [pdf, 2.23 Mb] Reports of the Breakout Group Discussions [pdf, 0.43 Mb] Closing Plenary Discussion and Recommendations [pdf, 0.11 Mb] Section II - Extended Abstracts of Individual Presentations at Breakout Group Sessions Breakout Group 1: Physical/Chemical Oceanography and Climate [pdf, 6.14 Mb] Breakout Group 2: Phytoplankton, Zooplankton, Micronekton and Benthos [pdf, 28.14 Mb] Breakout Group 3: Fish, Squid, Crabs and Shrimps [pdf, 4.30 Mb] Breakout Group 4: Highly Migratory Fishes, Seabirds and Marine Mammals [pdf, 6.27 Mb] Appendix 1. Workshop agenda [pdf, 0.15 Mb] Appendix 2. List of participants [pdf, 0.13 Mb] (Document pdf contains 216 pages)
Resumo:
A series of studies was initiated to assess the condition of benthic macroinfauna and chemical contaminant levels in sediments and biota of the Gray’s Reef National Marine Sanctuary (GRNMS) and nearby shelf waters off the coast of Georgia. Four key objectives of the research are (1) to document existing environmental conditions within the sanctuary in order to provide a quantitative benchmark for tracking any future changes due to either natural or human disturbances; (2) to examine broader cross-shelf spatial patterns in benthic fauna and sediment contaminant concentrations and to identify potential controlling factors associated with the observed patterns; (3) to assess any between-year temporal variability in benthic fauna; and (4) to evaluate the importance of benthic fauna as prey for higher trophic levels. Such questions are being addressed to help fulfill long-term science and management goals of the GRNMS. However, it is anticipated that the information will be of additional value in broadening our understanding of the surrounding South Atlantic Bight (SAB) ecosystem and in bringing the knowledge to bear on related resourcemanagement issues of the region. We have begun to address the first three of these objectives with data from samples collected in spring 2000 at stations within GRNMS, and in spring 2001 at stations within the sanctuary and along three cross-shelf transects extending from the mouths of Sapelo, Doboy, and Altamaha Sounds out to sanctuary depths (about 17-20 m). This report provides a description of baseline conditions within the sanctuary, based on results of the spring 2000 survey (Section II), and uses data from both 2000 and 2001 to examine overall spatial and temporal patterns in biological and chemical variables within the sanctuary and surrounding inner-shelf environment (Section III). (PDF contains 65 pages)
Resumo:
The mapping and geospatial analysis of benthic environments are multidisciplinary tasks that have become more accessible in recent years because of advances in technology and cost reductions in survey systems. The complex relationships that exist among physical, biological, and chemical seafloor components require advanced, integrated analysis techniques to enable scientists and others to visualize patterns and, in so doing, allow inferences to be made about benthic processes. Effective mapping, analysis, and visualization of marine habitats are particularly important because the subtidal seafloor environment is not readily viewed directly by eye. Research in benthic environments relies heavily, therefore, on remote sensing techniques to collect effective data. Because many benthic scientists are not mapping professionals, they may not adequately consider the links between data collection, data analysis, and data visualization. Projects often start with clear goals, but may be hampered by the technical details and skills required for maintaining data quality through the entire process from collection through analysis and presentation. The lack of technical understanding of the entire data handling process can represent a significant impediment to success. While many benthic mapping efforts have detailed their methodology as it relates to the overall scientific goals of a project, only a few published papers and reports focus on the analysis and visualization components (Paton et al. 1997, Weihe et al. 1999, Basu and Saxena 1999, Bruce et al. 1997). In particular, the benthic mapping literature often briefly describes data collection and analysis methods, but fails to provide sufficiently detailed explanation of particular analysis techniques or display methodologies so that others can employ them. In general, such techniques are in large part guided by the data acquisition methods, which can include both aerial and water-based remote sensing methods to map the seafloor without physical disturbance, as well as physical sampling methodologies (e.g., grab or core sampling). The terms benthic mapping and benthic habitat mapping are often used synonymously to describe seafloor mapping conducted for the purpose of benthic habitat identification. There is a subtle yet important difference, however, between general benthic mapping and benthic habitat mapping. The distinction is important because it dictates the sequential analysis and visualization techniques that are employed following data collection. In this paper general seafloor mapping for identification of regional geologic features and morphology is defined as benthic mapping. Benthic habitat mapping incorporates the regional scale geologic information but also includes higher resolution surveys and analysis of biological communities to identify the biological habitats. In addition, this paper adopts the definition of habitats established by Kostylev et al. (2001) as a “spatially defined area where the physical, chemical, and biological environment is distinctly different from the surrounding environment.” (PDF contains 31 pages)
Resumo:
ENGLISH:The present paper is principally concerned with the geographic distribution of the standing crop and production of phytoplankton at the surface of the eastern Pacific, east of 130°W and between 10°N and 33°S, as reflected by recently collected data. In addition we discuss some of the more obvious, general relationships among thermocline topography, nutrient concentration, and the various trophic levels from primary production to fish production. The limited data do not allow a seasonal study. We have therefore mapped all of the data together regardless of the time of collection, but do not wish to imply that the physical, chemical and biological system is without seasonal or periodic change. SPANISH:Como lo reflejan los datos recientemente recolectados, el presente trabajo está dedicado principalmente a la distribución geográfica de las cosechas estables y a la producción del fitoplancton en la superficie del Pacífico Oriental, al este de los 130°W y entre los 10°N y 33°S. Además discutimos algunas de las relaciones generales más obvias entre la topografía de la termoclina, la concentración de los nutrientes, y los varios niveles tróficos, desde la producción primaria hasta la producción de los peces. Los datos limitados no permiten un estudio estacional. Por lo tanto, hemos combinado todos los datos no tomando en cuenta el tiempo de la recolección, pero no queremos implicar que no existen cambios estacionales o periódicos en el sistema físico, químico y biológico.
Resumo:
ENGLISH: Between 1 October and 17 December 1955 investigations of the physical, chemical and biological oceanography of the Eastern Pacific Ocean in a region bounded approximately by 30° N. latitude, 9° S. latitude, 120° W. longitude and the mainland coast were conducted from the vessels Horizon and Spencer F. Baird of the Scripps Institution of Oceanography of the University of California. These were part of a cooperative operation, designated for convenience by the code name "Eastropic," in which a vessel of the U. S. Fish and Wildlife Service worked, during this same period, further west and a vessel of the Peruvian Navy worked further south, offshore from Peru. A vessel of the California State Fisheries Laboratory also conducted certain sub-surface tuna fishing operations and other studies in the same general region as the Scripps vessels. In addition to carrying out a number of special studies related to particular oceanographic features, the Scripps vessels occupied a considerable number of hydrographic stations. The locations of these stations, at each of which were made net-hauls for zooplankton, are shown in Figure 4 and Tables 2 and 3. At some of the hydrographic stations, and in Some places between stations, there were made from the Spencer F. Baird measurements of chlorophyll "a" and of primary production (by the C14 technique), both in situ and in a shipboard incubator. The purpose of this paper is to report on the results of these biological observations. SPANISH: Entre el 1° de octubre y el 17 de diciembre de 1955, a bordo de los barcos Horizon y Spencer F. Baird) de la Institución Scripps de Oceanografía de la Universidad de California, se hicieron investigaciones sobre la oceanografía física, química y biológica del Océano Pacífico Oriental, en una región limitada aproximadamente por los 30° N. de latitud, 9° S. de latitud, 120° O. de longitud y la costa continental. Estas investigaciones fueron parte de una operación que se realizó cooperativamente y a la que se convino darle el nombre codificado de "Eastropic". En ella, durante el mismo período, una embarcación del Servicio de Pesca y Vida Silvestre de los Estados Unidos (U. S. Fish and Wildlife Service) trabajó más hacia el oeste, y un barco de la armada peruana más hacia el sur, frente a la costa del Perú. También colaboró una nave del Laboratorio de Pesquerías del Estado de California (California State Fisheries Laboratory), realizando algunas operaciones de pesca de atún en aguas subsuperficiales, y otros estudios en la misma región general que recorrieron las embarcaciones de Scripps. Además de efectuar estudios especiales relacionados con las caracteristicas oceanográficas particulares de la región, las naves de Scripps establecieron un buen número de estaciones hidrográficas. La localización de estas estaciones se indica en la Figura 4 y en las Tablas 2 y 3; en cada una de ellas se hicieron rastreos con redes planctónicas para recoger muestras de zooplancton. En algunas de las estaciones hidrográficas, así como en algunos lugares entre estaciones, en el Spencer F. Baird se hicieron mediciones de la clorofila "a" y de la producción primaria (mediante la técnica del C14), tanto in situ como en una incubadora instalada a bordo. El propósito del presente trabajo es dar a conocer los resultados de estas observaciones biológicas. (PDF contains 44 pages.)
Resumo:
Abstract Fish sauce belongs to the most important condiments in Southeast Asian cuisine. It is a clear, amber to reddish liquid with an intensive smell. Fish sauce is used instead of salt for nearly each meal. Asian fish sauce is made from anchovies and other small fish. For the traditional process whole fresh fish are mixed with salt in the ratio 1:1 to 6:1 in wooden, clay or concrete tanks at tropical temperatures for 6 to 18 months. The liquefaction of the fish tissue is due to the action of endogenous enzymes in fish and exogenous enzymes from bacteria. During the fermentation amino acids, peptides and a lot of other substances are built, which are responsible for the characteristic aroma and flavour of these sauces. You can buy pure fish sauce, diluted fish sauce and fish sauce made from other types of animals like mussels, prawns and squids. In single Asian countries there are different national standards for the quality of fish sauces. In order to get a general idea of these products we have bought 16 fish and two oyster sauces from the retail trade in Hamburg and analyzed them with physical, chemical, sensory and microbiological methods. Kurzfassung Fischsauce gehört zu den wichtigsten Würzsaucen in der südostasiatischen Küche. Es ist eine klare, bernsteinfarbene bis rötlichbraune, sehr intensiv riechende Flüssigkeit. Sie wird anstelle von Salz verwendet und daher fast zu jedem Essen gereicht. Zur Herstellung von Fischsaucen werden hauptsächlich Anchovis und ähnliche kleine Fische verwendet. Bei der traditionellen Herstellung werden die ganzen Fische mit Meersalz in einem Holzfass, Tongefäß oder Betontank im Verhältnis 1:1 bis 6:1 gemischt. Während der anschließenden 6 – 18 Monate dauernden Lagerung bei tropischen Temperaturen bauen sich die Gewebeproteine durch fischeigene Enzyme und Mikroorganismen ab. Bei diesem mehrmonatigen Fermentationsprozess entstehen die für den Geschmack wichtigen Aminosäuren, Peptide und Aromastoffe. Es gibt neben reiner Fischsauce, auch verdünnte Fischsauce und Fischsaucen aus anderen Tieren wie Muscheln, Garnelen und Tintenfische. In den einzelnen asiatischen Ländern gibt es unterschiedliche nationale Qualitätsstandards. Um diese Produktgruppe näher kennen zu lernen, haben wir 16 Fisch- und 2 Austernsaucen aus dem Einzelhandel (Hamburg) mit physikalischen, chemischen, sensorischen und mikrobiologischen Verfahren untersucht.