38 resultados para Otindag sandy land
Resumo:
Fish production is considered in the barren chars or sandy land masses created through siltation along river banks and deltas in Bangladesh. The prospects for fish culture in ponds and cages or pen culture in rivers and canals are examined. The socioeconomic implications of fish culture as a livelihood source for communities living in char areas are also discussed.
Resumo:
The Bureau of Land Management acquired 7,500 acres of land as part of the re-use of the decommissioned Fort Ord Army base. A variety of geologic hazards exist on the landscape including gully erosion, mass wasting, and decaying earthen dams. This short report highlights a few critical areas that deserve closer evaluation and remediation. Of particular concern are decaying earthen dams and mass wasting of tall stream banks that may impact BLM infrastructure or adjacent urban development. (Document contains 13 paGES)
Resumo:
Air flow at the land-sea-air interface influences to a large extent the atmospheric conditions that determine the transport, di lution, and trapping of natural and man-made air pollutants in the coastal areas of Monterey Bay and the Salinas Valley. Analysis of the hourly air flow on a daily and monthly basis indicates patterns of stagnation from midnight to noon of the fol lowing day with moderate to strong air flow during period 1300 to 2200. Throughout the year 1971 whenever flow is greater than 5 mph, the prevailing wind direction is onshore and from a westerly direction. Suggestions for urbanization and industrialization are made on the basis of an understanding of the atmospheric conditions which lead to trapping and dispersal of atmospheric waste. (27 page document)
Resumo:
Aboriginal peoples in Canada have been mapping aspects of their cultures for more than a generation. Indians, Inuit, Métis, non-status Indians and others have called their maps by different names at various times and places: land use and occupancy; land occupancy and use; traditional use; traditional land use and occupancy; current use; cultural sensitive areas; and so on. I use “land use and occupancy mapping” in a generic sense to include all the above. The term refers to the collection of interview data about traditional use of resources and occupancy of lands by First Nation persons, and the presentation of those data in map form. Think of it as the geography of oral tradition, or as the mapping of cultural and resource geography. (PDF contains 81 pages.)
Resumo:
(1 poster)
Resumo:
In 2008, the Center for Watershed Protection (CWP) surveyed seventy-three coastal plain communities to determine their current practices and need for watershed planning and low impact development (LID). The survey found that communities had varying watershed planning effectiveness and need better stormwater management, land use planning, and watershed management communication. While technical capacity is improving, stormwater programs are under staffed and innovative site designs may be prohibited under current regulations. In addition, the unique site constraints (e.g., sandy soils, low relief, tidal influence, vulnerability to coastal hazards, etc.) and lack of local examples are common LID obstacles along the coast (Vandiver and Hernandez, 2009). LID stormwater practices are an innovative approach to stormwater management that provide an alternative to structural stormwater practices, reduce runoff, and maintain or restores hydrology. The term LID is typically used to refer to the systematic application of small, distributed practices that replicate pre-development hydrologic functions. Examples of LID practices include: downspout disconnection, rain gardens, bioretention areas, dry wells, and vegetated filter strips. In coastal communities, LID practices have not yet become widely accepted or applied. The geographic focus for the project is the Atlantic and Gulf coastal plain province which includes nearly 250,000 square miles in portions of fifteen states from New Jersey to Texas (Figure 1). This project builds on CWP’s “Coastal Plain Watershed Network: Adapting, Testing, and Transferring Effective Tools to Protect Coastal Plain Watersheds” that developed a coastal land cover model, conducted a coastal plain community needs survey (results are online here: http://www.cwp.org/#survey), created a coastal watershed Network, and adapted the 8 Tools for Watershed Protection Framework for coastal areas. (PDF contains 4 pages)
Resumo:
Population pressure in coastal New Hampshire challenges land use decision-making and threatens the ecological health and functioning of Great Bay, an estuary designated as both a NOAA National Estuarine Research Reserve and an EPA National Estuary Program site. Regional population in the seacoast has quadrupled in four decades resulting in sprawl, increased impervious surface cover and larger lot rural development (Zankel, et.al., 2006). All of Great Bay’s contributing watersheds face these challenges, resulting in calls for strategies addressing growth, development and land use planning. The communities within the Lamprey River watershed comprise this case study. Do these towns communicate upstream and downstream when making land use decisions? Are cumulative effects considered while debating development? Do town land use groups consider the Bay or the coasts in their decision-making? This presentation, a follow-up from the TCS 2008 conference and a completed dissertation, will discuss a novel social science approach to analyze and understand the social landscape of land use decision-making in the towns of the Lamprey River watershed. The methods include semi-structured interviews with GIS based maps in a grounded theory analytical strategy. The discussion will include key findings, opportunities and challenges in moving towards a watershed approach for land use planning. This presentation reviews the results of the case study and developed methodology, which can be used in watersheds elsewhere to map out the potential for moving towns towards EBM and watershed-scaled, land use planning. (PDF contains 4 pages)
Resumo:
Shellfish bed closures along the North Carolina coast have increased over the years seemingly concurrent with increases in population (Mallin 2000). More and faster flowing storm water has come to mean more bacteria, and fecal indicator bacterial (FIB) standards for shellfish harvesting are often exceeded when no source of contamination is readily apparent (Kator and Rhodes, 1994). Could management reduce bacterial loads if the source of the bacteria where known? Several potentially useful methods for differentiating human versus animal pollution sources have emerged including Ribotyping and Multiple Antibiotic Resistance (MAR) (US EPA, 2005). Total Maximum Daily Load (TMDL) studies on bacterial sources have been conducted for streams in NC mountain and Piedmont areas (U.S. EPA, 1991 and 2005) and are likely to be mandated for coastal waters. TMDL analysis estimates allowable pollutant loads and allocates them to known sources so management actions may be taken to restore water to its intended uses (U.S. EPA, 1991 and 2005). This project sought first to quantify and compare fecal contamination levels for three different types of land use on the coast, and second, to apply MAR and ribotyping techniques and assess their effectiveness for indentifying bacterial sources. Third, results from these studies would be applied to one watershed to develop a case study coastal TMDL. All three watershed study areas are within Carteret County, North Carolina. Jumping Run Creek and Pettiford Creek are within the White Oak River Basin management unit whereas the South River falls within the Neuse River Basin. Jumping Run Creek watershed encompasses approximately 320 ha. Its watershed was a dense, coastal pocosin on sandy, relic dune ridges, but current land uses are primarily medium density residential. Pettiford Creek is in the Croatan National Forest, is 1133 ha. and is basically undeveloped. The third study area is on Open Grounds Farm in the South River watershed. Half of the 630 ha. watershed is under cultivation with most under active water control (flashboard risers). The remaining portion is forested silviculture.(PDF contains 4 pages)
Resumo:
Aquatic vegetation is an essential component of the aquatic ecosystem with both positive and negative implications on the water body. Efforts are always made to curtail the excessive growth of aquatic plants in order to prevent them from becoming a nuisance in the ecosystem. One of the ways of solving such problem is the positive economic use of such plants. Utilization as a method of weed control within the aquatic ecosystem is considered to be one of the safest methods of weed control as this provides the riparian communities double advantages in terms of save environment and personal benefits of the plant. The flora diversity of freshwater and brackish environments posses a great potential to both man and higher animals alike. Due to this fact, this paper attempt to review the exploited and unexploited aquatic plants resources of many of our water bodies in Nigeria both economica/ly and socially, to the populace. Recommendations are also advanced for further studies that will enhance sound management of the resources for maximum benefits and sustainability