44 resultados para Nutrient concentration
Resumo:
From October 1970 through February 1972, temperature, salinity, dissolved oxygen, secchi depth and five major nutrients were observed at approximately monthly intervals in Elkhorn Slough and Moss Landing Harbor. In addition, similar hourly observations were made during two tidal studies during the wet and dry seasons. From the salinity measurements during the summer, a salt balance for Elkhorn Slough is formulated and rnean eddy diffusion coefficients are determined. The diffusion nlodel applied to longitudinal phosphate distributions yielded a mean diffusive flux of 12 kg P04/day (140 pg-at/m^2/day) for the area above the mean tidal prism. Consistent differences, apparently due to differing regenerati on ra tes, were observed in the phosphate and nitrogen distributions. Bottom sediments are proposed as a possible source for phosphate and as a sink for fixed nitrogen. Dairy farms located along central Elkhorn Slough are apparently a source for reduced nitrogen. During summer, nitrogen was found to be the limiting nutrient for primary production in the upper slough. Tidal observations indicated fresh water of high nutrient concentration consistently entered the harbor from fresh water sources to the south. This source water had a probable phosphate concentration of 40 to 60 ug-at/l and seasonally varying P:N ratio of 1:16 and 1:5 during the winter and summer respectively. Net production and respiration rates are calculated from diurnal variations in dissolved oxygen levels observed in upper Elkhorn Slough. Changes in phosphate associated with the variations in oxygen was close to the accepted ratio of 1:276 by atoms. Document is 88 pages.
Resumo:
ENGLISH:The present paper is principally concerned with the geographic distribution of the standing crop and production of phytoplankton at the surface of the eastern Pacific, east of 130°W and between 10°N and 33°S, as reflected by recently collected data. In addition we discuss some of the more obvious, general relationships among thermocline topography, nutrient concentration, and the various trophic levels from primary production to fish production. The limited data do not allow a seasonal study. We have therefore mapped all of the data together regardless of the time of collection, but do not wish to imply that the physical, chemical and biological system is without seasonal or periodic change. SPANISH:Como lo reflejan los datos recientemente recolectados, el presente trabajo está dedicado principalmente a la distribución geográfica de las cosechas estables y a la producción del fitoplancton en la superficie del Pacífico Oriental, al este de los 130°W y entre los 10°N y 33°S. Además discutimos algunas de las relaciones generales más obvias entre la topografía de la termoclina, la concentración de los nutrientes, y los varios niveles tróficos, desde la producción primaria hasta la producción de los peces. Los datos limitados no permiten un estudio estacional. Por lo tanto, hemos combinado todos los datos no tomando en cuenta el tiempo de la recolección, pero no queremos implicar que no existen cambios estacionales o periódicos en el sistema físico, químico y biológico.
Resumo:
It is widely recognised that conventional culture techniques may underestimate true viable bacterial numbers by several orders of magnitude. The basis of this discrepancy is that a culture in or on media of high nutrient concentration is highly selective (either through ”nutrient shock” or failure to provide vital co-factors) and decreases apparent diversity; thus it is unrepresentative of the natural community. In addition, the non-culturable but viable state (NCBV) is a strategy adopted by some bacteria as a response to environmental stress. The basis for the non-culturable state is that cells placed in conditions present in the environment cannot be recultured but can be shown to maintain their viability. Consequently, these cells would not be detected by standard water quality techniques that are based on culture. In the case of pathogens, it may explain outbreaks of disease in populations that have not come into contact with the pathogen. However, the NCBV state is difficult to attribute, due to the failure to distinguish between NCBV and non-viable cells. This article will describe experiences with the fish pathogen Aeromonas salmonicida subsp. salmonicida and the application of molecular techniques for its detection and physiological analysis.
Resumo:
In total 68 phytoplankton species were identified at the mouth of the Maheshkhali channel with the Bay of Bengal, among them 41 belong to Bacillariophyceae, 17 Dinophyceae, 7 Cyanophyceae and 3 to Chlorophyceae. The highest phytoplankton production was observed in November (578.0 x 105 cells/L) and the lowest in June (37.5 x 105 cells/L). Some hydrographic parameters e.g., surface water temperature, salinity and nutrients (N03-N and P04-P) were recorded and their relationship with the occurrence and abundance of phytoplankton population were also studied. Nutrient concentration was higher during the autumn months, when rain water provided the maximum outflow of rivers discharging into the channel. During the nutrient peak period, the total phytoplankton production was maximum. Bacillariophyceae was the dominant group of phytoplankton throughout the study period except in June and September, when Dinophyceae was dominant. Cyanophyceae was abundant in spring months when temperature began to rise.
Resumo:
Sefid-Rood River Estuary (SRE) is the most important riverine ecosystem in the south Caspian Sea along the Iranian coast lines. The aim of this study was to examine spatial and temporal variability in Phytoplankton and Zooplankton abundance and diversity in SRE. Variability of Chlorophyll a and inorganic nutrient concentration were determined during a year (November 2004– October 2005) in five sampling stations. Primary and secondry production were determined during a year. Total chlorophyll a concentration during the investigation ranged between zero to 22.8 μgl-1 and the highest levels were consistently recorded during summer and the lowest during winter with a annual mean concentration 4.48 μgl-1. Nutrient concentration was seasonally related to river flow with annual mean concentration: NO2 0.05±0.2 mgl-1, NO3 1.13±0.57 mgl-1, NH4 0.51±0.66 mgl-1, total phosphate 0.13±0.1mgl-1 and SiO2 5.68±1.91 mgl-1. Bacillariophytes, Cyanophytes, Chlorophytes, Pyrophytes and Euglenophytes were the dominant phytoplankton groups in this shallow and turbid estuary. The diversity and abundance of phytoplankton had a seasonal pattern while Diatomas and Chrysophytes were dominant throughout the year but Cyanophytes observed only during the summer. Zooplankton community structure was dominated by copepods which 68% of the total zooplankton. In the winter and summer seasons two increased in the number of zooplankton community and usually toward the sea had occurred. Zooplankton also showed a significant spatial and temporal variation. The high turbidity and temperature prime characteristics of SRE seem to be determining factors acting directly on phytoplankton and zooplankton temporal variability and nutrient fluctuations. Everywhere in this estuary nutrients appeared to be in excess of algal requirement and did not influence a phytoplankton and zooplankton composition. Also there was a positive correlation between chlorophyll a and temperature and a negative one with DIN and TP. Primary production determined in this estuary by dark and light butter method and G.P.P. 38.27±34.12 mgcm-2h-1 and N,PP 201.6±289.9 mgcm-2d-1. secondry production determined 15/128 mgc/m3/year. Everywhere in this estuary nutrients appeared to be in excess to algal requirement and did not influence in Chl. a and primary production. The most important factor influence on Chl. a was water temperature.
Resumo:
There is strong evidence to suggest that ground-water nitrate concentrations have increased in recent years and further increases are expected along portions of the central Gulf coast of Florida. Much of the nitrate enriched groundwater is discharged into surface waters through numerous freshwater springs that are characteristic of the area and the potential for eutrophication of their receiving waters is a legitimate concern. To test the potential effects of elevated nutrient concentrations on the periphyton community an in situ nutrient addition experiment was conducted in the spring-fed Chassahowitzka River, FL, USA, during the summer of 1999. Plastic tubes housing arrays of glass microscope slides were suspended in the stream. Periphyton colonizing the microscope slides was subjected to artificial increases in nitrogen, phosphorus or a combination of both. Slides from each tube were collected at 3- to 4- day intervals and the periphyton communities were measured for chlorophyll concentration. The addition of approximately 10 μg/L of phosphate above ambient concentrations significantly increased the amount of periphyton on artificial substrates relative to controls; the addition of approximately 100 μg/L of nitrate above ambient concentrations did not. The findings from this experiment implicated phosphorus, rather than nitrogen, as the nutrient that potentially limits periphyton growth in this system.(PDF contains 4 pages.)
Resumo:
This report documents the methods used at the Monterey Bay Aquarium Research Institute (MBARI) for analyzing seawater nutrient samples with an Alpkem Series 300 Rapid Flow Analyzer (RFA) system. The methods have been optimized for the particular requirements of this laboratory. The RFA system has been used to analyze approximately 20,000 samples during the past two years. The methods have been optimized to run nutrient analyses in a routine manner with a detection limit of better than -±1% and a within run precision of -±1% of the full scale concentration range. The normal concentration ranges are 0-200 ~M silicate, 0-5 ~M phosphate, 0-50 ~M nitrate, 0-3 ~M nitrite, and 0-10 ~M ammonium. The memorandum is designed to be used in a loose-leaf binder format. Each page is dated and as revisions are made, they should be inserted into the binder. The revisions should be added into the binder. Retain the old versions in order to maintain a historical record of the procedures. (88 pages)
Resumo:
In this report we describe the temporal and spatial distributions of inorganic nutrients over Georges Bank and in adjacent waters and discuss major features with respect to tbe nutrient environments of pbytoplankton. Nitrate and orthophosphorus were rapidly depleted from the surface layer of much of the study area in spring, but major differences were found between the shallow areas on Georges Bank and the surrounding stratified waters. In the "well-mixed" area of Georges Bank, the depletion encompassed the entire water column and ammonium became the dominant form of inorganic nitrogen throughout. Dissolved silicon was depleted slowly over central Georges Bank, reaching a minimum concentration in September while orthophosphorus gradually increased during the summer. The nutrient environment of phytoplankton over central Georges Bank may be described as vertically uniform but temporally changing in the relative availability of the various nutrients. In areas that undergo stratification (e.g., the central Gulf of Maine), a quasi-steady state was established as the surface water layer formed, consisting of declining nutrient gradients from below the euphotic layer to the top of the water column. These intergrading nutrient environments are relatively stable through time. Destratification reintroduced nutrients to depleted areas beginning in October; however, dissolved silicon was again depleted over shallow Georges Bank in late autumn though nitrate remained abundant. Slope water has been found to enter the bottom layer of the Gulf of Maine via the Northeast Channel. High nutrient concentrations observed in the bottom water of the Northeast Channel are consistent with this mechanism being the nutrient source for the Gulf of Maine. (PDF file contains 40 pages.)
Resumo:
Clarias (Clarias gariepinus) (Burshell, 1821) fingerlings were fed isonitrogenous diets (38.9% crude protein) with fermented fluted pumpkin leaves (FFPL) replacing different proportion (0,50,75,100%) of extruded soybean meal (ESM) for 8 weeks. Growth responses at the different substitution levels measured. Increasing FFPL intake resulted in better weight gains and higher specific growth rates (SGR) of 0.29, 0.36 and 0.38% per day respectively. The increase in growth from feeding diets containing 75% and 100% of the ESM replaced with FFPL were significantly higher (P<0.05) than those of other diets. Further more fish tissue protein deposition consistently increased with increasing level of FFPL concentration in their diets. Fish fed diets where whole ESM was replace 100% FFPL gave the best overall response in terms of their weight gain, food conversion ratio, protein efficiency ratio, and specific growth rate. Economic considerations indicate the replacement of ESM with FFPL, which is a cheaper ingredient in feeds for Clarias
Resumo:
We examined the impacts of mechanical shredding (i.e.. shredding plants and leaving biomass in the system) of the water chestnut (Trapa natans) on water quality and nutrient mobilization in a control and experimental site in Lake Champlain (Vermont-New York). A 1-ha plot was mechanically shredded within 1 h on 26 July, 1999. Broken plant material was initially concentrated on the lake surface of the experimental station after shredding, and was noticeable on the lake surface for 19 d. Over a two week period after shredding. concentrations of total nitrogen (N) and phosphorus (P), and soluble reactive P increased in the lower water column of the experimental station, coinciding with decomposition of water chestnut. Sediments in the control and experimental stations exhibited vet-v low rates of N and P release and could not account for increases in nutrient concentrations in the water column after mechanical shredding. Shredded plant material deployed in mesh bags at the experimental station lost similar to 70% of their total mass, and 42%, N and 70% P within 14 d. indicating Substantial nutrient mobilization via autolysis and decomposition. Chlorophyll a concentrations increased to 35 g/L at the experimental station on day 7 after shredding, compared to a concentration of 4 g/L at the control station. suggesting uptake of mobilized nutrients by phytoplankton. Disruption Of the Surface canopy of water chestnut by shredding was associated with marked increases in turbidity and dissolved oxygen, suggesting increased mixing at the experimental site.
Resumo:
Based on the recovery rates for Thalassia testudinum measured in this study for scars of these excavation depths and assuming a linear recovery horizon, we estimate that it would take ~ 6.9 years (95% CI. = 5.4 to 9.6 years) for T. testudinum to return to the same density as recorded for the adjacent undisturbed population. The application of water soluble fertilizers and plant growth hormones by mechanical injection into the sediments adjacent to ten propellor scars at Lignumvitae State Botanical Site did not significantly increase the recovery rate of Thalassia testudinum or Halodule wrightii. An alternative method of fertilization and restoration of propellor scars was also tested by a using a method of “compressed succession” where Halodule wrightii is substituted for T. testudinum in the initial stages of restoration. Bird roosting stakes were placed among H.wrightii bare root plantings in prop scars to facilitate the defecation of nitrogen and phosphorus enriched feces. In contrast to the fertilizer injection method, the bird stakes produced extremely high recovery rates of transplanted H. wrightii. We conclude that use of a fertilizer/hormone injection machine in the manner described here is not a feasible means of enhancing T. testudinum recovery in propellor scars on soft bottom carbonate sediments. Existing techniques such as the bird stake approach provide a reliable, and inexpensive alternative method that should be considered for application to restoration of seagrasses in these environments. Document contains 40 pages)
Resumo:
Executive Summary: The western National Coastal Assessment (NCA-West) program of EPA, in conjunction with the NOAA National Ocean Service (NOS), conducted an assessment of the status of ecological condition of soft sediment habitats and overlying waters along the western U.S. continental shelf, between the target depths of 30 and 120 m, during June 2003. NCA-West and NOAA/NOS partnered with the West Coast states (Washington (WA), Oregon (OR), and California (CA)), and the Southern California Coastal Water Research Project (SCCWRP) Bight ’03 program to conduct the survey. A total of 257 stations were sampled from Cape Flattery, WA to the Mexican border using standard methods and indicators applied in previous coastal NCA projects. A key study feature was the incorporation of a stratified-random sampling design with stations stratified by state and National Marine Sanctuary (NMS) status. Each of the three states was represented by at least 50 random stations. There also were a total of 84 random stations located within NOAA’s five NMSs along the West Coast including the Olympic Coast NMS (OCNMS), Cordell Bank NMS (CBNMS), Gulf of Farallones NMS (GFNMS), Monterey Bay NMS (MBNMS), and Channel Islands NMS (CINMS). Collection of flatfish via hook-and-line for fish-tissue contaminant analysis was successful at 50 EMAP/NCA-West stations. Through a collaboration developed with the FRAM Division of the Northwest Fisheries Science Center, fish from an additional 63 stations in the same region and depth range were also analyzed for fish-tissue contaminants. Bottom depth throughout the region ranged from 28 m to 125 m for most stations. Two slightly deeper stations from the Southern California Bight (SCB) (131, 134 m) were included in the data set. About 44% of the survey area had sediments composed of sands (< 20% silt-clay), about 47% was composed of intermediate muddy sands (20-80% silt-clay), and about 9% was composed of muds (> 80% silt-clay). The majority of the survey area (97%) had relatively low percent total organic carbon (TOC) levels of < 2%, while a small portion (< 1%) had high TOC levels (> 5%), in a range potentially harmful to benthic fauna. Salinity of surface waters for 92% of the survey area were > 31 psu, with most stations < 31 psu associated with the Columbia River plume. Bottom salinities ranged only between 31.6 and 34.4 psu. There was virtually no difference in mean bottom salinities among states or between NMS and non-NMS stations. Temperatures of surface water (range 8.5 -19.9 °C) and bottom water (range 5.8 -14.7 °C) averaged several degrees higher in CA in comparison to WA and OR. The Δσt index of watercolumn stratification indicated that about 31% of the survey area had strong vertical stratification of the water column. The index was greatest for waters off WA and lowest for CA waters. Only about 2.6 % of the survey area had surface dissolved oxygen (DO) concentrations ≤ 4.8 mg/L, and there were no values below the lower threshold (2.3 mg/L) considered harmful to the survival and growth of marine animals. Surface DO concentrations were higher in WA and OR waters than in CA, and higher in the OC NMS than in the CA sanctuaries. An estimated 94.3% of the area had bottom-water DO concentrations ≤ 4.8 mg/L and 6.6% had concentrations ≤ 2.3 mg/L. The high prevalence of DO from 2.3 to 4.8 mg/L (85% of survey area) is believed to be associated with the upwelling of naturally low DO water across the West Coast shelf. Mean TSS and transmissivity in surface waters (excluding OR due to sample problems) were slightly higher and lower, respectively, for stations in WA than for those in CA. There was little difference in mean TSS or transmissivity between NMS and non-NMS locations. Mean transmissivity in bottom waters, though higher in comparison to surface waters, showed little difference among geographic regions or between NMS and non-NMS locations. Concentrations of nitrate + nitrite, ammonium, total dissolved inorganic nitrogen (DIN) and orthophosphate (P) in surface waters tended to be highest in CA compared to WA and OR, and higher in the CA NMS stations compared to CA non-sanctuary stations. Measurements of silicate in surface waters were limited to WA and CA (exclusive of the SCB) and showed that concentrations were similar between the two states and approximately twice as high in CA sanctuaries compared to OCNMS or nonsanctuary locations in either state. The elevated nutrient concentrations observed at CA NMS stations are consistent with the presence of strong upwelling at these sites at the time of sampling. Approximately 93% of the area had DIN/P values ≤ 16, indicative of nitrogen limitation. Mean DIN/P ratios were similar among the three states, although the mean for the OCNMS was less than half that of the CA sanctuaries or nonsanctuary locations. Concentrations of chlorophyll a in surface waters ranged from 0 to 28 μg L-1, with 50% of the area having values < 3.9 μg L-1 and 10% having values > 14.5 μg L-1. The mean concentration of chlorophyll a for CA was less than half that of WA and OR locations, and concentrations were lowest in non-sanctuary sites in CA and highest at the OCNMS. Shelf sediments throughout the survey area were relatively uncontaminated with the exception of a group of stations within the SCB. Overall, about 99% of the total survey area was rated in good condition (<5 chemicals measured above corresponding effect range low (ERL) concentrations). Only the pesticides 4,4′-DDE and total DDT exceeded corresponding effect range-median (ERM) values, all at stations in CA near Los Angeles. Ten other contaminants including seven metals (As, Cd, Cr, Cu, Hg, Ag, Zn), 2-methylnaphthalene, low molecular weight PAHs, and total PCBs exceeded corresponding ERLs. The most prevalent in terms of area were chromium (31%), arsenic (8%), 2-methylnaphthalene (6%), cadmium (5%), and mercury (4%). The chromium contamination may be related to natural background sources common to the region. The 2-methylnaphthalene exceedances were conspicuously grouped around the CINMS. The mercury exceedances were all at non-sanctuary sites in CA, particularly in the Los Angeles area. Concentrations of cadmium in fish tissues exceeded the lower end of EPA’s non-cancer, human-health-risk range at nine of 50 EMAP/NCA-West and nine of 60 FRAM groundfish-survey stations, including a total of seven NMS stations in CA and two in the OCNMS. The human-health guidelines for all other contaminants were only exceeded for total PCBs at one station located in WA near the mouth of the Columbia River. Benthic species richness was relatively high in these offshore assemblages, ranging from 19 to 190 taxa per 0.1-m2 grab and averaging 79 taxa/grab. The high species richness was reflected over large areas of the shelf and was nearly three times greater than levels observed in estuarine samples along the West Coast (e.g NCA-West estuarine mean of 26 taxa/grab). Mean species richness was highest off CA (94 taxa/grab) and lower in OR and WA (55 and 56 taxa/grab, respectively). Mean species richness was very similar between sanctuary vs. non-sanctuary stations for both the CA and OR/WA regions. Mean diversity index H′ was highest in CA (5.36) and lowest in WA (4.27). There were no major differences in mean H′ between sanctuary vs. nonsanctuary stations for both the CA and OR/WA regions. A total of 1,482 taxa (1,108 to species) and 99,135 individuals were identified region-wide. Polychaetes, crustaceans and molluscs were the dominant taxa, both by percent abundance (59%, 17%, 12% respectively) and percent species (44%, 25%, 17%, respectively). There were no major differences in the percent composition of benthic communities among states or between NMSs and corresponding non-sanctuary sites. Densities averaged 3,788 m-2, about 30% of the average density for West Coast estuaries. Mean density of benthic fauna in the present offshore survey, averaged by state, was highest in CA (4,351 m-2) and lowest in OR (2,310 m-2). Mean densities were slightly higher at NMS stations vs. non-sanctuary stations for both the CA and OR/WA regions. The 10 most abundant taxa were the polychaetes Mediomastus spp., Magelona longicornis, Spiophanes berkeleyorum, Spiophanes bombyx, Spiophanes duplex, and Prionospio jubata; the bivalve Axinopsida serricata, the ophiuroid Amphiodia urtica, the decapod Pinnixa occidentalis, and the ostracod Euphilomedes carcharodonta. Mediomastus spp. and A. serricata were the two most abundant taxa overall. Although many of these taxa have broad geographic distributions throughout the region, the same species were not ranked among the 10 most abundant taxa consistently across states. The closest similarities among states were between OR and WA. At least half of the 10 most abundant taxa in NMSs were also dominant in corresponding nonsanctuary waters. Many of the abundant benthic species have wide latitudinal distributions along the West Coast shelf, with some species ranging from southern CA into the Gulf of Alaska or even the Aleutians. Of the 39 taxa on the list of 50 most abundant taxa that could be identified to species level, 85% have been reported at least once from estuaries of CA, OR, or WA exclusive of Puget Sound. Such broad latitudinal and estuarine distributions are suggestive of wide habitat tolerances. Thirteen (1.2%) of the 1,108 identified species are nonindigenous, with another 121 species classified as cryptogenic (of uncertain origin), and 208 species unclassified with respect to potential invasiveness. Despite uncertainties of classification, the number and densities of nonindigenous species appear to be much lower on the shelf than in the estuarine ecosystems of the Pacific Coast. Spionid polychaetes and the ampharetid polychaete Anobothrus gracilis were a major component of the nonindigenous species collected on the shelf. NOAA’s five NMSs along the West Coast of the U.S. appeared to be in good ecological condition, based on the measured indicators, with no evidence of major anthropogenic impacts or unusual environmental qualities compared to nearby nonsanctuary waters. Benthic communities in sanctuaries resembled those in corresponding non-sanctuary waters, with similarly high levels of species richness and diversity and low incidence of nonindigenous species. Most oceanographic features were also similar between sanctuary and non-sanctuary locations. Exceptions (e.g., higher concentrations of some nutrients in sanctuaries along the CA coast) appeared to be attributable to natural upwelling events in the area at the time of sampling. In addition, sediments within the sanctuaries were relatively uncontaminated, with none of the samples having any measured chemical in excess of ERM values. The ERL value for chromium was exceeded in sediments at the OCNMS, but at a much lower percentage of stations (four of 30) compared to WA and OR non-sanctuary areas (31 of 70 stations). ERL values were exceeded for arsenic, cadmium, chromium, 2- methylnaphthalene, low molecular weight PAHs, total DDT, and 4,4′-DDE at multiple sites within the CINMS. However, cases where total DDT, 4,4′-DDE, and chromium exceeded the ERL values were notably less prevalent at CINMS than in non-sanctuary waters of CA. In contrast, 2-methylnaphthalene above the ERL was much more prevalent in sediments at the CINMS compared to non-sanctuary waters off the coast of CA. While there are natural background sources of PAHs from oil seeps throughout the SCB, this does not explain the higher incidence of 2-methylnaphthalene contamination around CINMS. Two stations in CINMS also had levels of TOC (> 5%) potentially harmful to benthic fauna, though none of these sites exhibited symptoms of impaired benthic condition. This study showed no major evidence of extensive biological impacts linked to measured stressors. There were only two stations, both in CA, where low numbers of benthic species, diversity, or total faunal abundance co-occurred with high sediment contamination or low DO in bottom water. Such general lack of concordance suggests that these offshore waters are currently in good condition, with the lower-end values of the various biological attributes representing parts of a normal reference range controlled by natural factors. Results of multiple linear regression, performed using full model procedures to test for effects of combined abiotic environmental factors, suggested that latitude and depth had significant influences on benthic variables regionwide. Latitude had a significant inverse influence on all three of the above benthic variables, i.e. with values increasing as latitude decreased (p< 0.01), while depth had a significant direct influence on diversity (p < 0.001) and inverse effect on density (p <0.01). None of these variables varied significantly in relation to sediment % fines (at p< 0.1), although in general there was a tendency for muddier sediments (higher % fines) to have lower species richness and diversity and higher densities than coarser sediments. Alternatively, it is possible that for some of these sites the lower values of benthic variables reflect symptoms of disturbance induced by other unmeasured stressors. The indicators in this study included measures of stressors (e.g., chemical contaminants, eutrophication) that are often associated with adverse biological impacts in shallower estuarine and inland ecosystems. However, there may be other sources of humaninduced stress in these offshore systems (e.g., bottom trawling) that pose greater risks to ambient living resources and which have not been captured. Future monitoring efforts in these offshore areas should include indicators of such alternative sources of disturbance. (137pp.) (PDF contains 167 pages)
Resumo:
ENGLISH: This study shows how the catch and effort statistics, from 1951 to 1956, of the fishery for yellowfin tuna, Neothunnus macropterus, in the Eastern Tropical Pacific Ocean, have been used to compute: (i) two indices of average population density; (ii) an index of concentration of effort on areas of greatest density of available yellowfin. These three indices were then used to determine: (i) quarterly and annual variation in each of them; (ii) the relationship between the two indices of density; (iii) the relationship of each of the indices to the number of exploited one-degree rectangles. To remove extreme sampling variation at low levels of effort, the data from all one-degree rectangles subjected to less than five logged days' fishing in a quarter were eliminated, and the computations were repeated for comparison with those of the original data. SPANISH: Este estudio da a conocer cómo las estadísticas sobre la pesca y el esfuerzo de pesca de la pesquería del atún aleta amarilla, Neothunnus macropterus, en el Océano Pacífico Oriental Tropical, durante 1951 a 1956, han servido para computar: (i) dos índices del promedio de la densidad de la población; (ií) un índice de la concentración del esfuerzo en las áreas de mayor densidad de atún aleta amarilla disponible. Estos tres índices han sido luego usados para determinar: (i) la variación trimestral y anual en cada uno de ellos; (ií) la relación entre los dos índices de densidad; (iii) la relación de cada uno de los índices con el número de rectángulos de un grado explotados. Para evitar la extrema variación del muestreo a bajos niveles de esfuerzo, se eliminaron los datos de todos los rectángulos de un grado sujetos a menos de cinco días de actividad pesquera durante un trimestre según los registros de los cuadernos de bitácora, y las computaciones se repitieron para compararlas con las de los datos originales.
Resumo:
ENGLISH: In a previous Bulletin of this Commission, Griffiths (1960) discussed two indices of population density and an index of concentration of fishing effort of bait boats for yellowfin tuna in the Eastern Tropical Pacific for the 1951-1956 period. Yellowfin and skipjack tuna occur in the same general fishing areas and many of the commercial catches are composed of a mixture of the two species. It is desirable, therefore, to extend the investigation to skipjack and to the two species combined. SPANISH:En un Boletín anterior de esta Comisión, Griffiths (1960) se refiere a dos índices de la densidad de la población y a un índice de la concentración del esfuerzo de pesca de los barcos de carnada sobre el atún aleta amarilla en el Pacífico Oriental Tropical, correspondientes al período 1951-1956. Los atunes aleta amarilla y barrilete se encuentran en las mismas áreas generales de pesca y muchas de las pescas comerciales están compuestas de una mezcla de las dos especies. Es deseable, por lo tanto, ampliar la investigación en lo que se refiere al barrilete y a las dos especies combinadas.
Resumo:
ENGLISH: In the eastern Pacific Ocean nearly all of the commercial catches of yellowfin tuna (Thunnus albacares) and skipjack (Katsuwonus pelamis) are taken by two types of vessels, baitboats, which use pole and line in conjunction with live-bait, and purse-seiners. From its inception until very recently (1959), this fishery was dominated by baitboats. This method of fishing has been described by Godsil (1938) and Shimada and Schaefer (1956). From 1951 through 1958 baitboats caught between 66.4 and 90.8 per cent of the yellowfin and between 87.2 and 95.3 per cent of the skipjack landed by the California-based fleet. These vessels fished for tuna throughout the year and covered virtually all of the area from southern California to northern Chile. The purse-seine fishery for tunas developed out of the round-haul net fisheries for California sardines and other species. Scofield (1951) gives a detailed description of the development of gear and fishing methods. Prior to 1959 many of the seiners engaged in other fisheries during the fall and early winter months and consequently most of the fishing effort for tuna occurred in the period February-August. The vessels were quite small, averaging approximately 120 tons carrying capacity (Broadhead and Marshall, 1960), in comparison to the baitboats, of which the most numerous size-class was 201-300 tons. The seiners were naturally more restricted in range than the baitboats and most of their effort was restricted to the northern grounds. During the period 1959-61 most of the large baitboats were converted for purse-seining and the existing seiner fleet was modernized. These developments increased the range of the seiner fleet and resulted in a wider and more nearly even spatial and temporal distribution of effort. By the early part of 1961, the purse-seine fleet approximated the level of the preconversion baitboat fleet in amount of effort applied and area covered. The changes in the purse-seine fishery and the fishing methods employed in the modernized fleet are described by Orange and Broadhead (1959), Broadhead and Marshall (1960), McNeely (1961) and Broadhead (1962). The change in the relative importance of the two gears is illustrated by the decline in the proportion of the total logged tonnage landed by California-based baitboats, in comparison to the proportion landed by seiners. In 1959 baitboats landed 49.5 per cent of the yellowfin and 87.8 per cent of the skipjack. In 1960 these percentages were 22.9 and 74.7 respectively and in 1961 the decline continued to 12.6 per cent of the yellowfin and 30.0 per cent of the skipjack (Schaefer, 1962). In previous Bulletins of this Commission (Griffiths, 1960; Calkins, 1961) the baitboat catch and effort statistics were used to compute two indices of population density and an index of concentration of fishing effort and the fluctuations of these indices were analyzed in some detail. Due to the change in the relative importance of the two gears it is appropriate to extend this investigation to include the purse-seine data. The objectives of this paper are to compute two indices of population density and an index of concentration of fishing effort and to examine the fluctuations in these indices before and after the changes in the fishery. A further objective is to compare the purse-seine indices with those of the baitboats for the same time periods. SPANISH: En el Océano Pacífico Oriental casi todas las capturas comerciales del atún aleta amarilla (Thunnus albacares) y del barrilete (Katsuwonus pelamis) son efectuadas por dos tipos de barcos, los barcos de carnada que emplean la caña y el anzuelo en conjunto con la carnada viva, y los barcos rederos. Desde su comienzo hasta hace poco tiempo (1959), esta pesquería estaba dominada por los barcos de carnada. El método de pesca usado por estos barcos ha sido descrito por Godsil (1938) y por Shimada y Schaefer (1956). De 1951 a 1958, los barcos de carnada pescaron entre el 66.4 y el 90.8 por ciento del atún aleta amarilla y entre el 87.2 y el 95.3 por ciento del barrilete descargados por la flota que tiene su base en California. Estos barcos pescaron atún durante todo el año y cubrieron virtualmente toda el área de California meridional hasta la parte norte de Chile. La pesquería del atún con redes de cerco se originó en las pesquerías de las sardinas de California y otras especies, con redes que se remolcaban circularmente. Scofield (1951) dá una descripción detallada del desarrollo de los métodos y del equipo de pesca. Antes de 1959 muchos de los rederos se dedicaban a otras pesquerías durante los meses del otoño y a principios del invierno y consecuentemente, la mayor parte del esfuerzo depesca para la producción del atún ocurría en el período febrero-agosto. Las embarcaciones eran bastante pequeñas, con un promedio de aproximadamente 120 toneladas de capacidad para el transporte (Broadhead y Marshall, 1960) en comparación con los barcos de carnada, de los cuales la clase de tamaño más numerosa era de 201 a 300 toneladas. Los rederos estaban naturalmente más restringidos en su radio de acción que los barcos de carnada y la mayor parte de su esfuerzo se limitaba a las localidades del norte. Durante el período 1959-61, la mayoría de los grandes barcos de carnada fueron convertidos al sistema de pesca con redes de cerco, y se modernizó la flota existente de los rederos. Estos cambios aumentaron el alcance de la flota de los barcos rederos dando como resultado una distribución más amplia y casi más uniforme del esfuerzo espaciado y temporal. En la primera parte del año 1961, la flota de rederos se aproximó al nivel de la preconversión de la flota de clipers, en la cantidad de esfuerzo aplicado y al área comprendida. Los cambios en la pesquería con red y los métodos de pesca empleados en la flota modernizada, han sido descritos por Orange y Broadhead (1959), Broadl1ead y Marshall (1960), McNeely (1961) y Broadhead (1962). El cambio en la importancia relativa de los dos sistemas de pesca está ilustrado por la declinación en la proporción del tonelaje total registrado, como descargado por los barcos de carnada que tienen su base en California, comparado con la proporción desembarcada por los barcos rederos. En 1959 los clipers descargaron el 49.5 por ciento del atún aleta amarilla y el 87.8 por ciento del barrilete. En 1960 estos porcentajes fueron del 22.9 y 74.7 respectivamente, y en 1961 continuó la reducción hasta el 12.6 por ciento del atún aleta amarilla y el 30.0 por ciento del barrilete (Schaefer, 1962). En Boletines anteriores de la Comisión (Griffiths, 1960; Calkins, 1961) las estadísticas de la pesca y el esfuerzo de los clipers se utilizaron para computar dos índices de la densidad de población y un índice de la concentración del esfuerzo de pesca, y se analizaron algo detalladamente las fluctuaciones de estos índices. Debido al cambio en la importancia relativa de los dos sistemas de pesca, es conveniente extender esta investigación para incluir los datos correspondientes a los barcos rederos. Los objetivos del presente estudio son de computar dos índices de la densidad de población y un índice de la concentración del esfuerzo de pesca, y examinar las fluctuaciones en estos índices, antes y después de los cambios en la pesquería. Otro objetivo es de comparar los índices de los barcos rederos, con aquellos de los clipers en los mismos períodos de tiempo.