36 resultados para Conversational routine
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop "Making Oxygen Measurements Routine Like Temperature" was convened in St. Petersburg, Florida, January 4th - 6th, 2006. This event was sponsored by the University of South Florida (USF) College of Marine Science, an ACT partner institution and co-hosted by the Ocean Research Interactive Observatory Networks (ORION). Participants from researcldacademia, resource management, industry, and engineering sectors collaborated with the aim to foster ideas and information on how to make measuring dissolved oxygen a routine part of a coastal or open ocean observing system. Plans are in motion to develop large scale ocean observing systems as part of the US Integrated Ocean Observing System (100s; see http://ocean.us) and the NSF Ocean Observatory Initiative (001; see http://www.orionprogram.org/00I/default.hl). These systems will require biological and chemical sensors that can be deployed in large numbers, with high reliability, and for extended periods of time (years). It is also likely that the development cycle for new sensors is sufficiently long enough that completely new instruments, which operate on novel principles, cannot be developed before these complex observing systems will be deployed. The most likely path to development of robust, reliable, high endurance sensors in the near future is to move the current generation of sensors to a much greater degree of readiness. The ACT Oxygen Sensor Technology Evaluation demonstrated two important facts that are related to the need for sensors. There is a suite of commercially available sensors that can, in some circumstances, generate high quality data; however, the evaluation also showed that none of the sensors were able to generate high quality data in all circumstances for even one month time periods due to biofouling issues. Many groups are attempting to use oxygen sensors in large observing programs; however, there often seems to be limited communication between these groups and they often do not have access to sophisticated engineering resources. Instrument manufacturers also do not have sufficient resources to bring sensors, which are marketable, but of limited endurance or reliability, to a higher state of readiness. The goal of this ACT/ORION Oxygen Sensor Workshop was to bring together a group of experienced oceanographers who are now deploying oxygen sensors in extended arrays along with a core of experienced and interested academic and industrial engineers, and manufacturers. The intended direction for this workshop was for this group to exchange information accumulated through a variety of sensor deployments, examine failure mechanisms and explore a variety of potential solutions to these problems. One anticipated outcome was for there to be focused recommendations to funding agencies on development needs and potential solutions for 02 sensors. (pdf contains 19 pages)
Resumo:
Standard and routine metabolic rates (SMRs and RMRs, respectively) of juvenile sandbar sharks (Carcharhinus plumbeus) were measured over a range of body sizes (n=34) and temperatures normally associated with western Atlantic coastal nursery areas. The mean SMR Q10 (increase in metabolic rate with temperature) was 2.9 ±0.2. Heart rate decreased with increasing body mass but increased with temperature at a Q10 of 1.8−2.2. Self-paired measures of SMR and RMR were obtained for 15 individuals. Routine metabolic rate averaged 1.8 ±0.1 times the SMR and was not correlated with body mass. Assuming the maximum metabolic rate of sandbar sharks is 1.8−2.75 times the SMR (as is observed in other elasmobranch species), sandbar sharks are using between 34% and 100% of their metabolic scope just to sustain their routine continuous activity. This limitation may help to explain their slow individual and population growth rates, as well as the slow recoveries from overfishing of many shark stocks worl
Resumo:
This report documents the methods used at the Monterey Bay Aquarium Research Institute (MBARI) for analyzing seawater nutrient samples with an Alpkem Series 300 Rapid Flow Analyzer (RFA) system. The methods have been optimized for the particular requirements of this laboratory. The RFA system has been used to analyze approximately 20,000 samples during the past two years. The methods have been optimized to run nutrient analyses in a routine manner with a detection limit of better than -±1% and a within run precision of -±1% of the full scale concentration range. The normal concentration ranges are 0-200 ~M silicate, 0-5 ~M phosphate, 0-50 ~M nitrate, 0-3 ~M nitrite, and 0-10 ~M ammonium. The memorandum is designed to be used in a loose-leaf binder format. Each page is dated and as revisions are made, they should be inserted into the binder. The revisions should be added into the binder. Retain the old versions in order to maintain a historical record of the procedures. (88 pages)
Resumo:
On 15-16 January 2005, three offshore species of cetaceans (33 short-finned pilot whales, Globicephala macrorhynchus, one minke whale, Balaenoptera acutorostrata, and two dwarf sperm whales, Kogia sima) stranded alive on the beaches of North Carolina. The pilot whales stranded near Oregon Inlet, the minke whale in northern North Carolina, and the dwarf sperm whales near Cape Hatteras. Live strandings of three species in one weekend was unique in North Carolina and qualified as an Unusual Mortality Event. Gross necropsies were conducted on 16-17 January 2005 on 27 pilot whales, two dwarf sperm whales, and the minke whale. Samples were collected for clinical pathology, parasitology, gross pathology, histopathology, microbiology and serology. There was variation in the number of animals sampled for each collection type, however, due to carcasses washing off the beach or degradation in carcass condition during the course of the response. Comprehensive histologic examination was conducted on 16 pilot whales, both dwarf sperm whales, and the minke whale. Limited organ or only head tissue suites were obtained from nine pilot whales. Histologic examination of tissues began in February 2005 and concluded in December 2005 when final sampling was concluded. Neither the pilot whales nor dwarf sperm whales were emaciated although none had recently ingested prey in their stomachs. The minke whale was emaciated; it was likely a dependent calf that became separated from the female. Most serum biochemistry abnormalities appear to have resulted from the stranding and indicated deteriorating condition from being on land for an extended period. Three pilot whales had clinical evidence of pre-existing systemic inflammation, which was supported by histopathologic findings. Although gross and histologic lesions involving all organ systems were noted, consistent lesions were not observed across species. Verminous pterygoid sinusitis and healed fishery interactions were seen in pilot whales but neither of these changes were causes of debilitation or death. In three pilot whales and one dwarf sperm whale there was evidence of clinically significant disease in postcranial tissues which led to chronic debilitation. Cardiovascular disease was present in one pilot whale and one dwarf sperm whale; musculoskeletal disease and intra-abdominal granulomas were present in two pilot whales. These lesions were possible, but not definitive, causal factors in the stranding. Remaining lesions were incidental or post-stranding. The minke whale and three of five tested pilot whales had positive morbillivirus titers (≥1:8 with one at >1:256), but there was no histologic evidence of active viral infection. Parasites (nematodes, cestodes, and trematodes) were collected from 26 pilot whales and two dwarf sperm whales. Sites of collection included stomach, nasal/pterygoid, peribullar sinuses, blubber, and abdominal cavity. Parasite species, locations and loads were within normal limits for free-ranging cetaceans and were not considered causative for the stranding event. Gas emboli lesions which were considered consistent with or diagnostic of sonarassociated strandings of beaked whales or small cetaceans were not found in the whales stranded as part of UMESE0501Sp. Twenty-five heads were examined with nine specific anatomic locations of interest: extramandibular fat, intramandibular fat, auditory meatus, peribullar acoustic fat, peribullar soft tissue, peribullar sinus, pterygoid sinus, melon, and brain. The common finding in all examined heads was verminous pterygoid sinusitis. Intramandibular adipose tissue reddening, typically adjacent to the vascular plexus, was observed in some individuals and could represent localized hemorrhage resulting from vascular rete rupture, hypostatic congestion, or erythrocyte rupture during the freeze/thaw cycle. One cetacean had peracute to acute subdural hemorrhage that likely occurred from thrashing on the beach post-stranding, although its occurrence prior to stranding cannot be excluded. Information provided to NMFS by the U.S. Navy indicated routine tactical mid-frequency sonar operations from individual surface vessels over relatively short durations and small spatial scales within the area and time period investigated. No marine mammals were detected by marine mammal observers on operational vessels; standard operating procedure for surface naval vessels operating mid-frequency sonar is the use of trained visual lookouts using high-powered binoculars. Sound propagation modeling using information provided to NMFS indicated that acoustic conditions in the vicinity likely depended heavily on position of the receivers (e.g., range, bearing, depth) relative to that of the sources. Absent explicit information on the location of animals meant that it was not possible to estimate received acoustic exposures from active sonar transmissions. Nonetheless, the event was associated in time and space with naval activity using mid-frequency active sonar. It also had a number of features in common (e.g., the “atypical” distribution of strandings involving multiple offshore species, all stranding alive, and without evidence of common infectious or other disease process) with other sonar-related cetacean mass stranding events. Given that this event was the only stranding of offshore species to occur within a 2-3 day period in the region on record (i.e., a very rare event), and given the occurrence of the event simultaneously in time and space with a naval exercise using active sonar, the association between the naval sonar activity and the location and timing of the event could be a causal rather than a coincidental relationship. However, evidence supporting a definitive association is lacking, and, in particular, there are differences in operational/environmental characteristics between this event and previous events where sonar has apparently played a role in marine mammal strandings. This does not preclude behavorial avoidance of noise exposure. No harmful algal blooms were present along the Atlantic coast south of the Chesapeake Bay during the months prior to the event. Environmental conditions, including strong winds, changes in upwelling- to downwelling-favorable conditions, and gently sloping bathymetry, were consistent with conditions which have been correlated with other mass strandings. In summary, we did not find commonality in gross and histologic lesions that would indicate a single cause for this stranding event. Three pilot whales and one dwarf sperm whale had debilitating conditions identified that could have contributed to stranding, one pilot whale had a debilitating condition (subdural hemorrhage) that could have been present prior to or resulting from stranding. While the pilot and dwarf sperm whale strandings may have had a common cause, the minke whale stranding was probably just coincidental. On the basis of examination of physical evidence in the affected whales, however, we cannot definitively conclude that there was or was not a causal link between anthropogenic sonar activity or environmental conditions (or a combination of these factors) and the strandings. Overall, the cause of UMESE0501Sp in North Carolina is not and likely will not be definitively known. (PDF contains 240 pages)
Resumo:
This study summarizes the results of a survey designed to provide economic information about the financial status of commercial reef fish boats with homeports in the Florida Keys. A survey questionnaire was administered in the summer and fall of 1994 by interviewers in face-to-face meetings with owners or operators of randomly selected boats. Fishermen were asked for background information about themselves and their boats, their capital investments in boats and equipment, and about their average catches, revenues, and costs per trip for their two most important kinds of fishing trips during 1993 for species in the reef fish fishery. Respondents were characterized with regard to their dependence on the reef fish fishery as a source of household income. Boats were described in terms of their physical and financial characteristics. Different kinds of fishing trips were identified by the species that generated the greatest revenue. Trips were grouped into the following categories: yellowtail snapper (Ocyurus chrysurus); mutton snapper (Lutjanus analis), black grouper (Mycteroperca bonaci), or red grouper (Epinephelus morio); gray snapper (Lutjanus griseus); deeper water groupers and tilefishes; greater amberjack (Seriola dumerili); spiny lobster (Panulirus argus); king mackerel (Scomberomorus cavalla); and dolphin (Coryphaena hippurus). Average catches, revenues, routine trip costs, and net operating revenues per boat per trip and per boat per year were estimated for each category of fishing trips. In addition to its descriptive value, data collected during this study will aid in future examinations of the economic effects of various regulations on commercial reef fish fishermen.(PDF file contains 48 pages.)
Resumo:
In July 1974 Moss Landing Marine Laboratories began the continuation of the bi-weekly hydrographic observations in Monterey Bay. From 1951 to this date, these stations were sampled by personnel at Hopkins Marine Station in Pacific Grove. Small changes were made in the sampling routine: 1) to facilitate squid (Loligo opa1escens) studies, our observations were made at night, and 2) stations 1125 and 1154 are sampled in addition to five stations originally used by Hopkins Marine Station (2201, 2202, 2203, 2204, and 2205). These additional stations will provide important data of the nearshore environment. PDF contains 86 pages)
Resumo:
The data contained in this report were obtained as a continuance of the nearly bi-weekly hydrographic observations initiated by personnel at Hopkins Marine Station over two decades ago. These observations have been supported through the years by the State of California Marine Research Committee, California Cooperative Oceanic Fisheries Investigations. Since July 1974, the hydrographic sampling program has been carried out by the investigators at Moss Landing Marine Laboratories. From July 1974 to June 1976, this work was done in conjunction with an interdisciplinary study of the squid, Loligo opalescens, supported by the National Office of Sea Grant 'via the University of California Sea Grant College Project Number R/F-15. Five of the original CalCOFI stations (2201, 2202, 2203, 2204 and 2205) have been-retained in our sampling routine and additional inner-bay stations have been added (1154 and 1121) Sampling was conducted on a monthly basis for the entire year. All observations were made ab9ard R/V OCONOSTOTA. (PDF contains 93 pages)
Resumo:
Routine biostatistical port sampling data and landings records collected from the gulf menhaden purse seine fishery between 1974 and 1985 are updated. During most of the period, a total of 11 menhaden reduction plants operated in Mississippi and Louisiana, and the number of vessels in the purse seine fleet varied from 71 to 82. Total annual landings ranged from 447,100 metric tons in 1977 to the record landings for the fishery of 982,800 metric tons in 1984. Age-I and -2 gulf menhaden annually comprised almost 96% of the landings. Estimated total numbers of menhaden landed varied from 4,510.5 million in 1975 to 11,154.9 million in 1985. Annual mean lengths and weights of sampled fish-at-age showed lillie variation. Nominal or observed fishing effort gradually increased through Ihe 1970s and 1980s, reaching 655,800 vessel-ton-weeks in 1983. (PDF file contains 14 pages.)
Resumo:
Describes the routine activities that make up the work day of the University's Natural Resources Institute. Hours at the microscope, data recording, analysis, and publications. Responsible for a broad program of research and conservation education. Its main concern is with fresh and salt water fisheries, seafood processing and marketing, estuarine studies, game animals, forestry, and water pollution problems. (PDF contains 4 pages.)
Resumo:
ENGLISH: The Inter-American Tropical Tuna Commission has maintained a hydro-biological station in the Gulf of Panama located at 8°45'N, 79°23'W in connection with their ecological investigation of the anchoveta (Cetengraulis mysticetus), a tuna baitfish (see Peterson, 1961, for references) . The depth is approximately 42 meters at mean low water at this station. Routine hydrographic and biological observations have been made (Schaefer, Bishop and Howard, 1958; Schaefer and Bishop, 1958; Forsbergh, 1963), including the collection of quantitative phytoplankton samples from November 1954 through May 1957 (Smayda, 1959; unpublished). The seasonal and regional variations in phytoplankton growth in the Gulf of Panama have also been investigated (Smayda, 1963). The relationships existing between C1 4 assimilation as determined by 24 hour in situ experiments and diatom standing crop at 10 meters when expressed as cell numbers, cell volume, cell surface area and cell plasma volume have been assessed for 30 observations made between November 1954 and May 1957 at 8°45'N, 79°23'W. The average cell volume and cell surface area characteristics for 110 diatom species and varieties are presented. SPANISH: Las relaciones existentes entre la asimilación del C14 , determinadas después de 24 horas de experimentos in situ, y la cosecha estable de las diatomeas a 10 metros, expresando el número de células, volumen celular, área de la superficie celular y volumen del plasma celular, han sido determinadas por medio de 30 observaciones hechas entre noviembre de 1954 y mayo de 1957, a los 8°45'N, 79°23'W. Se presenta, para 110 especies y variedades de diatomeas, el promedio de las características del volumen celular y del área de la superficie celular. (PDF contains 67 pages.)
Resumo:
Bi-weekly phytoplankton samples were collected at 0, 10, and 20 m and enumerated by the Utermöhl sedimentation technique; 14C productivity measurements at 10 m, oblique zooplankton tows, and routine hydrographic observations were also made. Northerly winds induce upwelling during December-April, followed by a rainy season; a slight resurgence in upwelling may occur during July and/or August. Annual variations in upwelling intensity and rainfall occur. During upwelling, the upper 50 m, about 30 per cent of the total volume of the Gulf of Panama, is replaced with water 5 to 10 C colder than the more stratified, turbid and nutrient impoverished watermass present during the rainy season. The mean annual runoff accompanying an average annual precipitation of 2731 mm is estimated to equal a layer of fresh water 3.2 m thick. About 10 per cent of the phytoplankton phosphate and inorganic nitrogen requirements during the rainy season are accreted. (PDF contains 260 pages.)
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop on Optical Remote Sensing of Coastal Habitats was convened January 9-11, 2006 at Moss Landing Marine Laboratories in Moss Landing, California, sponsored by the ACT West Coast regional partnership comprised of the Moss Landing Marine Laboratories (MLML) and the Monterey Bay Aquarium Research Institute (MBARI). The "Optical Remote Sensing of Coastal Habitats" (ORS) Workshop completes ACT'S Remote Sensing Technology series by building upon the success of ACT'S West Coast Regional Partner Workshop "Acoustic Remote Sensing Technologies for Coastal Imaging and Resource Assessment" (ACT 04-07). Drs. Paul Bissett of the Florida Environmental Research Institute (FERI) and Scott McClean of Satlantic, Inc. were the ORS workshop co-chairs. Invited participants were selected to provide a uniform representation of the academic researchers, private sector product developers, and existing and potential data product users from the resource management community to enable development of broad consensus opinions on the role of ORS technologies in coastal resource assessment and management. The workshop was organized to examine the current state of multi- and hyper-spectral imaging technologies with the intent to assess the current limits on their routine application for habitat classification and resource monitoring of coastal watersheds, nearshore shallow water environments, and adjacent optically deep waters. Breakout discussions focused on the capabilities, advantages ,and limitations of the different technologies (e.g., spectral & spatial resolution), as well as practical issues related to instrument and platform availability, reliability, hardware, software, and technical skill levels required to exploit the data products generated by these instruments. Specifically, the participants were charged to address the following: (1) Identify the types of ORS data products currently used for coastal resource assessment and how they can assist coastal managers in fulfilling their regulatory and management responsibilities; (2) Identify barriers and challenges to the application of ORS technologies in management and research activities; (3) Recommend a series of community actions to overcome identified barriers and challenges. Plenary presentations by Drs. Curtiss 0. Davis (Oregon State University) and Stephan Lataille (ITRES Research, Ltd.) provided background summaries on the varieties of ORS technologies available, deployment platform options, and tradeoffs for application of ORS data products with specific applications to the assessment of coastal zone water quality and habitat characterization. Dr. Jim Aiken (CASIX) described how multiscale ground-truth measurements were essential for developing robust assessment of modeled biogeochemical interpretations derived from optically based earth observation data sets. While continuing improvements in sensor spectral resolution, signal to noise and dynamic range coupled with sensor-integrated GPS, improved processing algorithms for georectification, and atmospheric correction have made ORS data products invaluable synoptic tools for oceanographic research, their adoption as management tools has lagged. Seth Blitch (Apalachicola National Estuarine Research Reserve) described the obvious needs for, yet substantial challenges hindering the adoption of advanced spectroscopic imaging data products to supplement the current dominance of digital ortho-quad imagery by the resource management community, especially when they impinge on regulatory issues. (pdf contains 32 pages)
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop on Trace Metal Sensors for Coastal Monitoring was convened April 11-13, 2005 at the Embassy Suites in Seaside, California with partnership from Moss Landing Marine Laboratories (MLML) and the Monterey Bay Aquarium Research Institute (MBARI). Trace metals play many important roles in marine ecosystems. Due to their extreme toxicity, the effects of copper, cadmium and certain organo-metallinc compounds (such as tributyltin and methylmercury) have received much attention. Lately, the sublethal effects of metals on phytoplankton biochemistry, and in some cases the expression of neurotoxins (Domoic acid), have been shown to be important environmental forcing functions determining the composition and gene expression in some groups. More recently the role of iron in controlling phytoplankton growth has led to an understanding of trace metal limitation in coastal systems. Although metals play an important role at many different levels, few technologies exist to provide rapid assessment of metal concentrations or metal speciation in the coastal zone where metal-induced toxicity or potential stimulation of harmful algal blooms, can have major economic impacts. This workshop focused on the state of on-site and in situ trace element detection technologies, in terms of what is currently working well and what is needed to effectively inform coastal zone managers, as well as guide adaptive scientific sampling of the coastal zone. Specifically the goals of this workshop were to: 1) summarize current regional requirements and future targets for metal monitoring in freshwater, estuarine and coastal environments; 2) evaluate the current status of metal sensors and possibilities for leveraging emerging technologies for expanding detection limits and target elements; and 3) help identify critical steps needed for and limits to operational deployment of metal sensors as part of routine water quality monitoring efforts. Following a series of breakout group discussions and overview talks on metal monitoring regulatory issues, analytical techniques and market requirements, workshop participants made several recommendations for steps needed to foster development of in situ metal monitoring capacities: 1. Increase scientific and public awareness of metals of environmental and biological concern and their impacts in aquatic environments. Inform scientific and public communities regarding actual levels of trace metals in natural and perturbed systems. 2. Identify multiple use applications (e.g., industrial waste steam and drinking water quality monitoring) to support investments in metal sensor development. (pdf contains 27 pages)
Resumo:
Fish cage culture is a rapid aquacultural practice of producing fish with more yield compared to traditional pond culture. Several species cultured by this method include Cyprinus carpio, Orechromis niloticus, Sarotherodon galilaeus, Tilapia zilli, Clarias lazera, C. gariepinus, Heterobranchus bidorsalis, Citharinus citharus, Distochodus rostratus and Alestes dentes. However, the culture of fish in cages has some problems that are due to mechanical defects of the cage or diseases due to infection. The mechanical problems which may lead to clogged net, toxicity and easy access by predators depend on defects associated with various types of nets which include fold sieve cloth net, wire net, polypropylene net, nylon, galvanized and welded net. The diseases problems are of two types namely introduced diseases due to parasites. The introduced parasites include Crustaseans, Ergasilus sp. Argulus africana, and Lamprolegna sp, Helminth, Diplostomulum tregnna: Protozoan, Trichodina sp, Myxosoma sp, Myxobolus sp. the second disease problems are inherent diseases aggravated by the very rich nutrient environment in cages for rapid bacterial, saprophytic fungi, and phytoplanktonic bloom resulting in clogging of net, stagnation of water and low biological oxygen demand (BOD). The consequence is fish kill, prevalence of gill rot and dropsy conditions. Recommendations on routine cage hygiene, diagnosis and control procedures to reduce fish mortality are highlighted
Resumo:
Changes in management practices and agricultural productivity over the past twenty years have lead to nitrate pollution and eutrophication of lakes and rivers. Information on nitrate concentrations and discharge has been collected on the River Frome at East Stoke since 1965, using the same analytical nitrate method so that the results are comparable. These records of weekly spot values of nitrate concentration and daily mean discharges have been analysed for trends and seasonal patterns in both concentration and nitrate loadings. In this extension of our nitrate contract, a new automated method of intensive sampling has been used to monitor short-term variability and to assess how well similar routine (weekly) sampling schemes can represent the true nitrate record.