4 resultados para write

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Part I, a method for finding solutions of certain diffusive dispersive nonlinear evolution equations is introduced. The method consists of a straightforward iteration procedure, applied to the equation as it stands (in most cases), which can be carried out to all terms, followed by a summation of the resulting infinite series, sometimes directly and other times in terms of traces of inverses of operators in an appropriate space.

We first illustrate our method with Burgers' and Thomas' equations, and show how it quickly leads to the Cole-Hopft transformation, which is known to linearize these equations.

We also apply this method to the Korteweg and de Vries, nonlinear (cubic) Schrödinger, Sine-Gordon, modified KdV and Boussinesq equations. In all these cases the multisoliton solutions are easily obtained and new expressions for some of them follow. More generally we show that the Marcenko integral equations, together with the inverse problem that originates them, follow naturally from our expressions.

Only solutions that are small in some sense (i.e., they tend to zero as the independent variable goes to ∞) are covered by our methods. However, by the study of the effect of writing the initial iterate u_1 = u_(1)(x,t) as a sum u_1 = ^∼/u_1 + ^≈/u_1 when we know the solution which results if u_1 = ^∼/u_1, we are led to expressions that describe the interaction of two arbitrary solutions, only one of which is small. This should not be confused with Backlund transformations and is more in the direction of performing the inverse scattering over an arbitrary “base” solution. Thus we are able to write expressions for the interaction of a cnoidal wave with a multisoliton in the case of the KdV equation; these expressions are somewhat different from the ones obtained by Wahlquist (1976). Similarly, we find multi-dark-pulse solutions and solutions describing the interaction of envelope-solitons with a uniform wave train in the case of the Schrodinger equation.

Other equations tractable by our method are presented. These include the following equations: Self-induced transparency, reduced Maxwell-Bloch, and a two-dimensional nonlinear Schrodinger. Higher order and matrix-valued equations with nonscalar dispersion functions are also presented.

In Part II, the second Painleve transcendent is treated in conjunction with the similarity solutions of the Korteweg-de Vries equat ion and the modified Korteweg-de Vries equation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flash memory is a leading storage media with excellent features such as random access and high storage density. However, it also faces significant reliability and endurance challenges. In flash memory, the charge level in the cells can be easily increased, but removing charge requires an expensive erasure operation. In this thesis we study rewriting schemes that enable the data stored in a set of cells to be rewritten by only increasing the charge level in the cells. We consider two types of modulation scheme; a convectional modulation based on the absolute levels of the cells, and a recently-proposed scheme based on the relative cell levels, called rank modulation. The contributions of this thesis to the study of rewriting schemes for rank modulation include the following: we

•propose a new method of rewriting in rank modulation, beyond the previously proposed method of “push-to-the-top”;

•study the limits of rewriting with the newly proposed method, and derive a tight upper bound of 1 bit per cell;

•extend the rank-modulation scheme to support rankings with repetitions, in order to improve the storage density;

•derive a tight upper bound of 2 bits per cell for rewriting in rank modulation with repetitions;

•construct an efficient rewriting scheme that asymptotically approaches the upper bound of 2 bit per cell.

The next part of this thesis studies rewriting schemes for a conventional absolute-levels modulation. The considered model is called “write-once memory” (WOM). We focus on WOM schemes that achieve the capacity of the model. In recent years several capacity-achieving WOM schemes were proposed, based on polar codes and randomness extractors. The contributions of this thesis to the study of WOM scheme include the following: we

•propose a new capacity-achievingWOM scheme based on sparse-graph codes, and show its attractive properties for practical implementation;

•improve the design of polarWOMschemes to remove the reliance on shared randomness and include an error-correction capability.

The last part of the thesis studies the local rank-modulation (LRM) scheme, in which a sliding window going over a sequence of real-valued variables induces a sequence of permutations. The LRM scheme is used to simulate a single conventional multi-level flash cell. The simulated cell is realized by a Gray code traversing all the relative-value states where, physically, the transition between two adjacent states in the Gray code is achieved by using a single “push-to-the-top” operation. The main results of the last part of the thesis are two constructions of Gray codes with asymptotically-optimal rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We approach the problem of automatically modeling a mechanical system from data about its dynamics, using a method motivated by variational integrators. We write the discrete Lagrangian as a quadratic polynomial with varying coefficients, and then use the discrete Euler-Lagrange equations to numerically solve for the values of these coefficients near the data points. This method correctly modeled the Lagrangian of a simple harmonic oscillator and a simple pendulum, even with significant measurement noise added to the trajectories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a partial fulfillment of the requirements in obtaining a Professional Degree in Geophysical Engineering at the California Institute of Technology. Spontaneous Polarization method of electrical exploration was chosen as the subject of this thesis. It is also known as "self potential electrical prospecting" and "natural currents method."

The object of this thesis is to present a spontaneous polarization exploration work done by the writer, and to apply analytical interpretation methods to these field results.

The writer was confronted with the difficulty of finding the necessary information in a complete paper about this method. The available papers are all too short and repeat the usual information, giving the same examples. The decision was made to write a comprehensive paper first, including the writer's experience, and then to present the main object of the thesis.

The following paper comprises three major parts:

1 - A comprehensive treatment of the spontaneous polarization method.

2 - Report of the field work.

3 - Analytical interpretation of the field work results.

The main reason in choosing this subject is that this method is the most reliable, easiest and requires the least equipment in prospecting for sulphide orebodies on unexplored, rough terrains.

The intention of the writer in compiling the theoretical and analytical information has been mainly to prepare a reference paper about this method.

The writer wishes to express his appreciation to Dr. G. W. Potapenko, Associate Professor of Physics at California Institute of Technology, for his generous help.