3 resultados para working range

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the theoretical solution and experimental verification of phase conjugation via nondegenerate four-wave mixing in resonant media. The theoretical work models the resonant medium as a two-level atomic system with the lower state of the system being the ground state of the atom. Working initially with an ensemble of stationary atoms, the density matrix equations are solved by third-order perturbation theory in the presence of the four applied electro-magnetic fields which are assumed to be nearly resonant with the atomic transition. Two of the applied fields are assumed to be non-depleted counterpropagating pump waves while the third wave is an incident signal wave. The fourth wave is the phase conjugate wave which is generated by the interaction of the three previous waves with the nonlinear medium. The solution of the density matrix equations gives the local polarization of the atom. The polarization is used in Maxwell's equations as a source term to solve for the propagation and generation of the signal wave and phase conjugate wave through the nonlinear medium. Studying the dependence of the phase conjugate signal on the various parameters such as frequency, we show how an ultrahigh-Q isotropically sensitive optical filter can be constructed using the phase conjugation process.

In many cases the pump waves may saturate the resonant medium so we also present another solution to the density matrix equations which is correct to all orders in the amplitude of the pump waves since the third-order solution is correct only to first-order in each of the field amplitudes. In the saturated regime, we predict several new phenomena associated with degenerate four-wave mixing and also describe the ac Stark effect and how it modifies the frequency response of the filtering process. We also show how a narrow bandwidth optical filter with an efficiency greater than unity can be constructed.

In many atomic systems the atoms are moving at significant velocities such that the Doppler linewidth of the system is larger than the homogeneous linewidth. The latter linewidth dominates the response of the ensemble of stationary atoms. To better understand this case the density matrix equations are solved to third-order by perturbation theory for an atom of velocity v. The solution for the polarization is then integrated over the velocity distribution of the macroscopic system which is assumed to be a gaussian distribution of velocities since that is an excellent model of many real systems. Using the Doppler broadened system, we explain how a tunable optical filter can be constructed whose bandwidth is limited by the homogeneous linewidth of the atom while the tuning range of the filter extends over the entire Doppler profile.

Since it is a resonant system, sodium vapor is used as the nonlinear medium in our experiments. The relevant properties of sodium are discussed in great detail. In particular, the wavefunctions of the 3S and 3P states are analyzed and a discussion of how the 3S-3P transition models a two-level system is given.

Using sodium as the nonlinear medium we demonstrate an ultrahigh-Q optical filter using phase conjugation via nondegenerate four-wave mixing as the filtering process. The filter has a FWHM bandwidth of 41 MHz and a maximum efficiency of 4 x 10-3. However, our theoretical work and other experimental work with sodium suggest that an efficient filter with both gain and a narrower bandwidth should be quite feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sufficient conditions are derived for the validity of approximate periodic solutions of a class of second order ordinary nonlinear differential equations. An approximate solution is defined to be valid if an exact solution exists in a neighborhood of the approximation.

Two classes of validity criteria are developed. Existence is obtained using the contraction mapping principle in one case, and the Schauder-Leray fixed point theorem in the other. Both classes of validity criteria make use of symmetry properties of periodic functions, and both classes yield an upper bound on a norm of the difference between the approximate and exact solution. This bound is used in a procedure which establishes sufficient stability conditions for the approximated solution.

Application to a system with piecewise linear restoring force (bilinear system) reveals that the approximate solution obtained by the method of averaging is valid away from regions where the response exhibits vertical tangents. A narrow instability region is obtained near one-half the natural frequency of the equivalent linear system. Sufficient conditions for the validity of resonant solutions are also derived, and two term harmonic balance approximate solutions which exhibit ultraharmonic and subharmonic resonances are studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cross sections for the two antiproton-proton annihilation-in-flight modes,

ˉp + p → π+ + π-

ˉp + p → k+ + k-

were measured for fifteen laboratory antiproton beam momenta ranging from 0.72 to 2.62 GeV/c. No magnets were used to determine the charges in the final state. As a result, the angular distributions were obtained in the form [dσ/dΩ (ΘC.M.) + dσ/dΩ (π – ΘC.M.)] for 45 ≲ ΘC.M. ≲ 135°.

A hodoscope-counter system was used to discriminate against events with final states having more than two particles and antiproton-proton elastic scattering events. One spark chamber was used to record the track of each of the two charged final particles. A total of about 40,000 pictures were taken. The events were analyzed by measuring the laboratory angle of the track in each chamber. The value of the square of the mass of the final particles was calculated for each event assuming the reaction

ˉp + p → a pair of particles with equal masses.

About 20,000 events were found to be either annihilation into π ±-pair or k ±-pair events. The two different charged meson pair modes were also distinctly separated.

The average differential cross section of ˉp + p → π+ + π- varied from ~ 25 µb/sr at antiproton beam momentum 0.72 GeV/c (total energy in center-of-mass system, √s = 2.0 GeV) to ~ 2 µb/sr at beam momentum 2.62 GeV/c (√s = 2.64 GeV). The most striking feature in the angular distribution was a peak at ΘC.M. = 90° (cos ΘC.M. = 0) which increased with √s and reached a maximum at √s ~ 2.1 GeV (beam momentum ~ 1.1 GeV/c). Then it diminished and seemed to disappear completely at √s ~ 2.5 GeV (beam momentum ~ 2.13 GeV/c). A valley in the angular distribution occurred at cos ΘC.M. ≈ 0.4. The differential cross section then increased as cos ΘC.M. approached 1.

The average differential cross section for ˉp + p → k+ + k- was about one third of that of the π±-pair mode throughout the energy range of this experiment. At the lower energies, the angular distribution, unlike that of the π±-pair mode, was quite isotropic. However, a peak at ΘC.M. = 90° seemed to develop at √s ~ 2.37 GeV (antiproton beam momentum ~ 1.82 GeV/c). No observable change was seen at that energy in the π±-pair cross section.

The possible connection of these features with the observed meson resonances at 2.2 GeV and 2.38 GeV, and its implications, were discussed.