12 resultados para wind generated electricity

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arid and semiarid landscapes comprise nearly a third of the Earth's total land surface. These areas are coming under increasing land use pressures. Despite their low productivity these lands are not barren. Rather, they consist of fragile ecosystems vulnerable to anthropogenic disturbance.

The purpose of this thesis is threefold: (I) to develop and test a process model of wind-driven desertification, (II) to evaluate next-generation process-relevant remote monitoring strategies for use in arid and semiarid regions, and (III) to identify elements for effective management of the world's drylands.

In developing the process model of wind-driven desertification in arid and semiarid lands, field, remote sensing, and modeling observations from a degraded Mojave Desert shrubland are used. This model focuses on aeolian removal and transport of dust, sand, and litter as the primary mechanisms of degradation: killing plants by burial and abrasion, interrupting natural processes of nutrient accumulation, and allowing the loss of soil resources by abiotic transport. This model is tested in field sampling experiments at two sites and is extended by Fourier Transform and geostatistical analysis of high-resolution imagery from one site.

Next, the use of hyperspectral remote sensing data is evaluated as a substantive input to dryland remote monitoring strategies. In particular, the efficacy of spectral mixture analysis (SMA) in discriminating vegetation and soil types and detennining vegetation cover is investigated. The results indicate that hyperspectral data may be less useful than often thought in determining vegetation parameters. Its usefulness in determining soil parameters, however, may be leveraged by developing simple multispectral classification tools that can be used to monitor desertification.

Finally, the elements required for effective monitoring and management of arid and semiarid lands are discussed. Several large-scale multi-site field experiments are proposed to clarify the role of wind as a landscape and degradation process in dry lands. The role of remote sensing in monitoring the world's drylands is discussed in terms of optimal remote sensing platform characteristics and surface phenomena which may be monitored in order to identify areas at risk of desertification. A desertification indicator is proposed that unifies consideration of environmental and human variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous studies have shown that flexible materials improve resilience and durability of a structure. Several studies have investigated the behavior of elastic plates under the influence of a free stream, such as studies of the fluttering flag and others of shape reconfiguration, due to a free stream.

The principle engineering contribution of this thesis is the design and development of a vertical axis wind turbine that features pliable blades which undergo various modes of behavior, ultimately leading to rotational propulsion of the turbine. The wind turbine design was tested in a wind tunnel and at the Caltech Laboratory for Optimized Wind Energy. Ultimately, the flexible blade vertical axis wind turbine proved to be an effective way of harnessing the power of the wind.

In addition, this body of work builds on the current knowledge of elastic cantilever plates in a free stream flow by investigating the inverted flag. While previous studies have focused on the fluid structure interaction of a free stream on elastic cantilever plates, none had studied the plate configuration where the trailing edge was clamped, leaving the leading edge free to move. Furthermore, the studies presented in this thesis establish the geometric boundaries of where the large-amplitude flapping occurs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy and sustainability have become one of the most critical issues of our generation. While the abundant potential of renewable energy such as solar and wind provides a real opportunity for sustainability, their intermittency and uncertainty present a daunting operating challenge. This thesis aims to develop analytical models, deployable algorithms, and real systems to enable efficient integration of renewable energy into complex distributed systems with limited information.

The first thrust of the thesis is to make IT systems more sustainable by facilitating the integration of renewable energy into these systems. IT represents the fastest growing sectors in energy usage and greenhouse gas pollution. Over the last decade there are dramatic improvements in the energy efficiency of IT systems, but the efficiency improvements do not necessarily lead to reduction in energy consumption because more servers are demanded. Further, little effort has been put in making IT more sustainable, and most of the improvements are from improved "engineering" rather than improved "algorithms". In contrast, my work focuses on developing algorithms with rigorous theoretical analysis that improve the sustainability of IT. In particular, this thesis seeks to exploit the flexibilities of cloud workloads both (i) in time by scheduling delay-tolerant workloads and (ii) in space by routing requests to geographically diverse data centers. These opportunities allow data centers to adaptively respond to renewable availability, varying cooling efficiency, and fluctuating energy prices, while still meeting performance requirements. The design of the enabling algorithms is however very challenging because of limited information, non-smooth objective functions and the need for distributed control. Novel distributed algorithms are developed with theoretically provable guarantees to enable the "follow the renewables" routing. Moving from theory to practice, I helped HP design and implement industry's first Net-zero Energy Data Center.

The second thrust of this thesis is to use IT systems to improve the sustainability and efficiency of our energy infrastructure through data center demand response. The main challenges as we integrate more renewable sources to the existing power grid come from the fluctuation and unpredictability of renewable generation. Although energy storage and reserves can potentially solve the issues, they are very costly. One promising alternative is to make the cloud data centers demand responsive. The potential of such an approach is huge.

To realize this potential, we need adaptive and distributed control of cloud data centers and new electricity market designs for distributed electricity resources. My work is progressing in both directions. In particular, I have designed online algorithms with theoretically guaranteed performance for data center operators to deal with uncertainties under popular demand response programs. Based on local control rules of customers, I have further designed new pricing schemes for demand response to align the interests of customers, utility companies, and the society to improve social welfare.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power system is at the brink of change. Engineering needs, economic forces and environmental factors are the main drivers of this change. The vision is to build a smart electrical grid and a smarter market mechanism around it to fulfill mandates on clean energy. Looking at engineering and economic issues in isolation is no longer an option today; it needs an integrated design approach. In this thesis, I shall revisit some of the classical questions on the engineering operation of power systems that deals with the nonconvexity of power flow equations. Then I shall explore some issues of the interaction of these power flow equations on the electricity markets to address the fundamental issue of market power in a deregulated market environment. Finally, motivated by the emergence of new storage technologies, I present an interesting result on the investment decision problem of placing storage over a power network. The goal of this study is to demonstrate that modern optimization and game theory can provide unique insights into this complex system. Some of the ideas carry over to applications beyond power systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I. Foehn winds of southern California.
An investigation of the hot, dry and dust laden winds occurring in the late fall and early winter in the Los Angeles Basin and attributed in the past to the influences of the desert regions to the north revealed that these currents were of a foehn nature. Their properties were found to be entirely due to dynamical heating produced in the descent from the high level areas in the interior to the lower Los Angeles Basin. Any dust associated with the phenomenon was found to be acquired from the Los Angeles area rather than transported from the desert. It was found that the frequency of occurrence of a mild type foehn of this nature during this season was sufficient to warrant its classification as a winter monsoon. This results from the topography of the Los Angeles region which allows an easy entrance to the air from the interior by virtue of the low level mountain passes north of the area. This monsoon provides the mild winter climate of southern California since temperatures associated with the foehn currents are far higher than those experienced when maritime air from the adjacent Pacific Ocean occupies the region.

II. Foehn wind cyclo-genesis.
Intense anticyclones frequently build up over the high level regions of the Great Basin and Columbia Plateau which lie between the Sierra Nevada and Cascade Mountains to the west and the Rocky Mountains to the east. The outflow from these anticyclones produce extensive foehns east of the Rockies in the comparatively low level areas of the middle west and the Canadian provinces of Alberta and Saskatchewan. Normally at this season of the year very cold polar continental air masses are present over this territory and with the occurrence of these foehns marked discontinuity surfaces arise between the warm foehn current, which is obliged to slide over a colder mass, and the Pc air to the east. Cyclones are easily produced from this phenomenon and take the form of unstable waves which propagate along the discontinuity surface between the two dissimilar masses. A continual series of such cyclones was found to occur as long as the Great Basin anticyclone is maintained with undiminished intensity.

III. Weather conditions associated with the Akron disaster.
This situation illustrates the speedy development and propagation of young disturbances in the eastern United States during the spring of the year under the influence of the conditionally unstable tropical maritime air masses which characterise the region. It also furnishes an excellent example of the superiority of air mass and frontal methods of weather prediction for aircraft operation over the older methods based upon pressure distribution.

IV. The Los Angeles storm of December 30, 1933 to January 1, 1934.
This discussion points out some of the fundamental interactions occurring between air masses of the North Pacific Ocean in connection with Pacific Coast storms and the value of topographic and aerological considerations in predicting them. Estimates of rainfall intensity and duration from analyses of this type may be made and would prove very valuable in the Los Angeles area in connection with flood control problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current power grid is on the cusp of modernization due to the emergence of distributed generation and controllable loads, as well as renewable energy. On one hand, distributed and renewable generation is volatile and difficult to dispatch. On the other hand, controllable loads provide significant potential for compensating for the uncertainties. In a future grid where there are thousands or millions of controllable loads and a large portion of the generation comes from volatile sources like wind and solar, distributed control that shifts or reduces the power consumption of electric loads in a reliable and economic way would be highly valuable.

Load control needs to be conducted with network awareness. Otherwise, voltage violations and overloading of circuit devices are likely. To model these effects, network power flows and voltages have to be considered explicitly. However, the physical laws that determine power flows and voltages are nonlinear. Furthermore, while distributed generation and controllable loads are mostly located in distribution networks that are multiphase and radial, most of the power flow studies focus on single-phase networks.

This thesis focuses on distributed load control in multiphase radial distribution networks. In particular, we first study distributed load control without considering network constraints, and then consider network-aware distributed load control.

Distributed implementation of load control is the main challenge if network constraints can be ignored. In this case, we first ignore the uncertainties in renewable generation and load arrivals, and propose a distributed load control algorithm, Algorithm 1, that optimally schedules the deferrable loads to shape the net electricity demand. Deferrable loads refer to loads whose total energy consumption is fixed, but energy usage can be shifted over time in response to network conditions. Algorithm 1 is a distributed gradient decent algorithm, and empirically converges to optimal deferrable load schedules within 15 iterations.

We then extend Algorithm 1 to a real-time setup where deferrable loads arrive over time, and only imprecise predictions about future renewable generation and load are available at the time of decision making. The real-time algorithm Algorithm 2 is based on model-predictive control: Algorithm 2 uses updated predictions on renewable generation as the true values, and computes a pseudo load to simulate future deferrable load. The pseudo load consumes 0 power at the current time step, and its total energy consumption equals the expectation of future deferrable load total energy request.

Network constraints, e.g., transformer loading constraints and voltage regulation constraints, bring significant challenge to the load control problem since power flows and voltages are governed by nonlinear physical laws. Remarkably, distribution networks are usually multiphase and radial. Two approaches are explored to overcome this challenge: one based on convex relaxation and the other that seeks a locally optimal load schedule.

To explore the convex relaxation approach, a novel but equivalent power flow model, the branch flow model, is developed, and a semidefinite programming relaxation, called BFM-SDP, is obtained using the branch flow model. BFM-SDP is mathematically equivalent to a standard convex relaxation proposed in the literature, but numerically is much more stable. Empirical studies show that BFM-SDP is numerically exact for the IEEE 13-, 34-, 37-, 123-bus networks and a real-world 2065-bus network, while the standard convex relaxation is numerically exact for only two of these networks.

Theoretical guarantees on the exactness of convex relaxations are provided for two types of networks: single-phase radial alternative-current (AC) networks, and single-phase mesh direct-current (DC) networks. In particular, for single-phase radial AC networks, we prove that a second-order cone program (SOCP) relaxation is exact if voltage upper bounds are not binding; we also modify the optimal load control problem so that its SOCP relaxation is always exact. For single-phase mesh DC networks, we prove that an SOCP relaxation is exact if 1) voltage upper bounds are not binding, or 2) voltage upper bounds are uniform and power injection lower bounds are strictly negative; we also modify the optimal load control problem so that its SOCP relaxation is always exact.

To seek a locally optimal load schedule, a distributed gradient-decent algorithm, Algorithm 9, is proposed. The suboptimality gap of the algorithm is rigorously characterized and close to 0 for practical networks. Furthermore, unlike the convex relaxation approach, Algorithm 9 ensures a feasible solution. The gradients used in Algorithm 9 are estimated based on a linear approximation of the power flow, which is derived with the following assumptions: 1) line losses are negligible; and 2) voltages are reasonably balanced. Both assumptions are satisfied in practical distribution networks. Empirical results show that Algorithm 9 obtains 70+ times speed up over the convex relaxation approach, at the cost of a suboptimality within numerical precision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulsars emit radiation over an extremely wide frequency range, from radio through gamma. Recently, systems in which this radiation significantly alters the atmospheres of low-mass pulsar companions have been discovered. These systems, ranging from ones with highly anisotropic heating to those with transient X-ray emissions, represent an exciting opportunity to investigate pulsars through the changes they induce in their companions. In this work, we present both analytic and numerical work investigating these phenomena, with a particular focus on atmospheric heat transport, transient phenomena, and the possibility of deep heating via gamma rays. We find that certain classes of binary systems may explain decadal-timescale X-ray transient phenomena, as well as the formation of so-called redback companion systems. We also posit an explanation for the formation of high-eccentricity millisecond pulsars with white dwarf companions. In addition, we examine the temperature anisotropy induced by the Pulsar in its companion, and demonstrate that this may be used to infer properties of both the companion and the Pulsar wind. Finally, we explore the possibility of spontaneously generated banded winds in rapidly rotating convecting objects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study the dynamics of flow over the blades of vertical axis wind turbines was investigated using a simplified periodic motion to uncover the fundamental flow physics and provide insight into the design of more efficient turbines. Time-resolved, two-dimensional velocity measurements were made with particle image velocimetry on a wing undergoing pitching and surging motion to mimic the flow on a turbine blade in a non-rotating frame. Dynamic stall prior to maximum angle of attack and a leading edge vortex development were identified in the phase-averaged flow field and captured by a simple model with five modes, including the first two harmonics of the pitch/surge frequency identified using the dynamic mode decomposition. Analysis of these modes identified vortical structures corresponding to both frequencies that led the separation and reattachment processes, while their phase relationship determined the evolution of the flow.

Detailed analysis of the leading edge vortex found multiple regimes of vortex development coupled to the time-varying flow field on the airfoil. The vortex was shown to grow on the airfoil for four convection times, before shedding and causing dynamic stall in agreement with 'optimal' vortex formation theory. Vortex shedding from the trailing edge was identified from instantaneous velocity fields prior to separation. This shedding was found to be in agreement with classical Strouhal frequency scaling and was removed by phase averaging, which indicates that it is not exactly coupled to the phase of the airfoil motion.

The flow field over an airfoil undergoing solely pitch motion was shown to develop similarly to the pitch/surge motion; however, flow separation took place earlier, corresponding to the earlier formation of the leading edge vortex. A similar reduced-order model to the pitch/surge case was developed, with similar vortical structures leading separation and reattachment; however, the relative phase lead of the separation mode, corresponding to earlier separation, necessitated that a third frequency to be incorporated into the reattachment mode to provide a relative lag in reattachment.

Finally, the results are returned to the rotating frame and the effects of each flow phenomena on the turbine are estimated, suggesting kinematic criteria for the design of improved turbines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of an investigation of wind tunnel wall interference in a two-dimensional wind tunnel at high Mach numbers. The results are presented in the form of curves of lift coefficient versus the ratio of model chord to tunnel height, as functions of Mach number and angle of attack. The investigation was carried out by the authors at the Guggenheim Aeronautical Laboratory of the California Institute of Technology during the school year 1944-45.

Tests were carried out on the NACA low drag airfoil section 65,1-012 at Mach numbers from .60 to .80, and angles of attack of from 1 to 3 degrees. Models were 1", 2", 4" and 6" chord, giving values of the chord to tunnel height ration of .1 to .6. Schlieren photographs were made of shock waves where they occurred.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within a wind farm, multiple turbine wakes can interact and have a substantial effect on the overall power production. This makes an understanding of the wake recovery process critically important to optimizing wind farm efficiency. Vertical-axis wind turbines (VAWTs) exhibit features that are amenable to dramatically improving this efficiency. However, the physics of the flow around VAWTs is not well understood, especially as it pertains to wake interactions, and it is the goal of this thesis to partially fill this void. This objective is approached from two broadly different perspectives: a low-order view of wind farm aerodynamics, and a detailed experimental analysis of the VAWT wake.

One of the contributions of this thesis is the development of a semi-empirical model of wind farm aerodynamics, known as the LRB model, that is able to predict turbine array configurations to leading order accuracy. Another contribution is the characterization of the VAWT wake as a function of turbine solidity. It was found that three distinct regions of flow exist in the VAWT wake: (1) the near wake, where periodic blade shedding of vorticity dominates; (2) a transition region, where growth of a shear-layer instability occurs; (3) the far wake, where bluff-body oscillations dominate. The wake transition can be predicted using a new parameter, the dynamic solidity, which establishes a quantitative connection between the wake of a VAWT and that of a circular cylinder. The results provide insight into the mechanism of the VAWT wake recovery and the potential means to control it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of a two-stream wind tunnel was undertaken to allow the simulation and study of certain features of the flow field around the blades of high-speed axial-flow turbomachineries. The mixing of the two parallel streams with designed Mach numbers respectively equal to 1.4 and 0.7 will simulate the transonic Mach number distribution generally obtained along the tips of the first stage blades in large bypass-fan engines.

The GALCIT hypersonic compressor plant will be used as an air supply for the wind tunnel, and consequently the calculations contained in the first chapter are derived from the characteristics and the performance of this plant.

The transonic part of the nozzle is computed by using a method developed by K. O. Friedrichs. This method consists essentially of expanding the coordinates and the characteristics of the flow in power series. The development begins with prescribing, more or less arbitrarily, a Mach number distribution along the centerline of the nozzle. This method has been programmed for an IBM 360 computer to define the wall contour of the nozzle.

A further computation is carried out to correct the contour for boundary layer buildup. This boundary layer analysis included geometry, pressure gradient, and Mach number effects. The subsonic nozzle is calculated {including boundary layer buildup) by using the same computer programs. Finally, the mixing zone downstream of the splitter plate was investigated to prescribe the wall contour correction necessary to ensure a constant-pressure test section.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety (equational class) of lattices is said to be finitely based if there exists a finite set of identities defining the variety. Let Mn denote the lattice variety generated by all modular lattices of width not exceeding n. M1 and M2 are both the class of all distributive lattices and consequently finitely based. B. Jónsson has shown that M3 is also finitely based. On the other hand, K. Baker has shown that Mn is not finitely based for 5 ≤ n ˂ ω. This thesis settles the finite basis problem for M4. M4 is shown to be finitely based by proving the stronger result that there exist ten varieties which properly contain M4 and such that any variety which properly contains M4 contains one of these ten varieties.

The methods developed also yield a characterization of sub-directly irreducible width four modular lattices. From this characterization further results are derived. It is shown that the free M4 lattice with n generators is finite. A variety with exactly k covers is exhibited for all k ≥ 15. It is further shown that there are 2Ӄo sub- varieties of M4.